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INTRODUCTION 

 

General characteristics of the work. The proposed dissertation researches the 

development of a UAV detection system based on the recognition of acoustic 

signatures. The recognition of UAV acoustic signals was processed in the form of 

Melspectrogram frequency characteristics and studied by deep learning methods, in 

particular, recurrent neural networks. As a result, the GRU based architecture in the 

developed structure was proposed as an effective method for the UAV acoustic data 

recognition system. 

Relevance of the work. In recent years, unmanned aerial vehicles have 

become widespread and have become very popular. The use of these small devices, 

also called drones, is increasing day by day, especially for purposes such as children's 

toys, adult recreational entertainment, photography, video surveillance in hard-to-

reach places, agronomy, military intelligence, delivery, and transportation. Its 

increased technological capacity, including longer flight times, the ability to take 

flexible photos and videos from a variety of angles, and the opportunity for unfettered 

entry into different zones, is the primary factor behind their increased use by people. 

[1-7]. Also, over the past decade, the mass manufacturing of unmanned aerial 

vehicles (UAVs) at affordable prices has led to the problem of continuous use of 

these vehicles for various dubious and recreational purposes [1, p. 862-864; 2, p. 242-

243; 6, p. 138669-138680; 7, p. 3856-1-3856-17]. The use of these vehicles 

carelessly or destructively puts individuals, their lives, protected institutions, and 

international borders in danger. These justifications take into account the fact that 

UAVs are becoming increasingly hazardous. Recently, there have been several drone 

incidents in the country. In particular, drones of the Republic of Uzbekistan, one of 

the five countries bordering our country, were registered in the border areas during 

their unauthorized flights. At the same time, the headquarters of the Border Guard 

National Security Troops of the Republic of Kazakhstan confirmed the fact of the 

UAV crash of the Republic of Uzbekistan, and negotiations were held between the 

relevant services of the Republic of Kazakhstan and the Republic of Uzbekistan [8]. 

Another similar incident was observed in 2019 in Nur-Sultan, above the building of 

the Ministry of Defense of the Republic of Kazakhstan. This is not the first case of an 

underwater incident with the unauthorized use of a UAV. At the same time, two 

people who tried to launch the quadcopter were detained and prosecuted. As a result, 

the procedure for using unmanned aerial vehicles (quadcopters) over settlements is 

published on the official website of the Ministry of Industry and Infrastructure 

Development of the Republic of Kazakhstan [9, 10]. In addition, the UAV was found 

in the south of the country in the city of Arys [11]. Moreover, drones used for 

recreational purposes and as children's toys have caused significant damage around 

the world. That is, there are many cases of damage caused by improper management. 

At the Saudi Arabian border city of Asir, a similar unmanned aerial vehicle (UAV) 

disaster also happened  [12]. Another UAV disaster took place in China: 12 of the 

200 drones that were in the air at the same time as a light show in Zhengzhou 

crashed. Only 2.5 minutes after their triumphant climb, the UAVs in this incident 
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started to plummet back to the ground, colliding with everything in their path as they 

dropped, including trees, automobiles, and other objects. Unmanned drones forced 

several event attendees to escape and hide [13]. Overall, the reasons why the 

sustainable use of these vehicles is impossible are more thoroughly addressed in 

works [6, p. 138670-138681; 7, p. 3856-1-3856-17]. Thus, the high frequency of 

unauthorized drone flights requires the development of reliable real-time drone 

detection systems for protected areas. Therefore, these detection systems for the 

unauthorized use of UAVs are becoming more and more relevant. Particularly in the 

buildings of establishments such as kindergartens, hospitals, universities, 

administrations, ministries, border regions of the nation, protected territories where 

military bases are situated, reservoirs that shield major cities from snowmelt, and 

agricultural areas. In order to stop the proliferation of unlicensed drones in restricted 

and protected key regions, there has been an increasing demand for research into 

security measures based on drone detection systems. Generally, in the UAV research 

and development (R&D) market, the Drone Detection System is being studied based 

on the following four main methods: Radar reconnaissance, Camera-based detection, 

RF signal processing, and Acoustic Sensor listening Detection [6, p. 138675; 7, 

р. 3856-2]. The aforementioned drone incidents require the preparation of a 

recognition system, including the recognition of their position, load states and models 

during flight according to their protection zones. That is why the acoustic direction is 

relevant due to its technical capabilities for recognizing such extended tasks. 

The goal of the research. The goal of this thesis is to investigate an efficient 

recognition method of UAV Acoustic Data. 

The Objectives of the research. In the studies of this dissertation, three main 

objectives are set: 

1. Preparation and adaptation of UAV acoustic data and their various states. 

2. Develop an efficient real-time system that integrates the acoustic signal 

processing step into the deep learning architecture. 

3. Explore UAV acoustic data recognition using deep learning networks such 

as CNN, SimpleRNN, LSTM, BiLSTM and GRU. 

In the first objective, UAV sounds were recorded in different states such as 

"Unloaded" and "Loaded". The sounds of the loaded UAVs were recorded in the state 

when they had a payload during the flight with different weights. The sounds of the 

environment in various scenarios and objects with increased motor noise were 

recorded as “background noise”. Various series of UAV models were also recorded. 

At the second objective, the processing of UAV acoustic signals was combined 

into the architecture of deep learning networks. 

In the third objective, deep learning algorithms were studied. In particular, all 

types of recurrent neural networks such as SimpleRNN, LSTM, BiLSTM and GRU. 

These neural networks have been investigated and applied to UAV sound detection. 

A comparative analysis of CNN and GRU networks was also carried out, as a result, 

the advantage of the GRU network for recognizing UAV acoustic data was 

determined. 
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Methods of the research. The research of this thesis was carried out on the 

basis of a combination of analytical and empirical methods. In particular, the 

experimental approach was employed to collect UAV sounds for the study's first 

objective. Additionally, Fast Fourier analysis, Short-Time Fourier Transform and Mel 

spectrogram filters were employed to analyze the audio signals that were gathered. 

Moreover, the Convolutional Neural Networks (CNNs) and Recurrent Neural 

networks (RNNs) deep learning methods were extensively used to achieve the last 

objective. 

The scientific novelty of the work.  

The novelty of this study is to development of an architecture of a UAV 

acoustic data recognition system with the integration of a modified Melspectrogram. 

The theoretical and practical significance of the work. In this dissertation 

work, types of recurrent neural networks for recognition of UAV acoustic data were 

extensively investigated. The proposed system is recommended for national security 

systems, in particular the security of people, densely populated areas, airports, 

government buildings, kindergartens, schools, universities, national borders, customs 

and strategic places. 

Research publications:  

1. Multi-label UAV sound classification using Stacked Bidirectional LSTM // 

2020 Fourth IEEE International Conference on Robotic Computing (IRC), (Taichung, 

2020. – P. 453-458). 

2. Stacked BiLSTM - CNN for Multiple label UAV sound classification // 

2020 Fourth IEEE International Conference on Robotic Computing (IRC), (Taichung, 

2020. – P. 470-474).  

3. Effectiveness of the System of Unmanned Aerial Vehicles Detection on the 

Basis of Acoustic Signature // Vestnik KazNRTU. Vestnik KazNRTU. – 2020. – 

Vol. 4, Issue 140. – P. 300-307 (ISSN1680-9211).  

4. Investigation of Acoustic Signals in Uav Detection Tasks for Various 

Models (2021-08-17).  

5. Survey on Different Drone Detection methods in the Restricted Flight Areas 

// Vestnik KazNRTU. – 2019 (ISSN1680-9211).  

6. Practical Study of Recurrent Neural Networks for Efficient Real-Time 

Drone Sound Detection: A Review // Drones. – 2023. – №7. – Р. 26.  
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acoustic data recognition” and "Real-time UAV acoustic data recognition and 

classification system''.  
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1 STATE OF THE ART: UAV DETECTION WITH ACOUSTIC DATA 

 

1.1 UAV detection systems 

Currently, UAVs, also referred to as drones, are becoming more and more 

popular among consumers as they provide an easy solution for most day-to-day 

needs. They are being used increasingly in areas such as agriculture, photography, 

film production, law enforcement, logistics, and transportation. Drones are very 

useful because they can reach even the most remote places without pilot control on 

the board. With this capability, drones have become a global phenomenon and they 

are increasingly being used for many activities. Modern technology is evolving more 

quickly than it has ever been. Our lifestyles are constantly changing due to 

advancements that could improve matters, quicker, and simpler. In this regard, UAVs 

have completely changed the aviation industry, making it safer, more accessible, and 

much more productive. Drones are getting more compact and accessible as 

technology develops. One UAV can actually now fit in a human hand. They are 

currently being used for various reasons by various companies due to their modest 

size. Some types of them are used to support search and rescue efforts. Drones are 

growing in popularity in the commercial sector as well since they can be simpler to 

use, safer to operate, and more reasonably priced. They are increasingly being used 

for military purposes due to their long stay in the air. They are also becoming more 

and more popular with clients and professionals looking for advanced alternatives for 

their homes and business. Although these UAVs were originally created and 

developed for military use, today they serve an important purpose for various 

businesses, governments, and individuals around the world [14]. Despite receiving a 

lot of attention in a variety of civil and commercial solutions, UAVs pose a sort of 

airspace security threat that can put in danger individuals, property, key areas, and 

buildings. While the targets and complexity of such threats can range from 

incompetent skill of the UAV controller to intentional attacks, they are all capable of 

causing significant damage [15, 16]. There have been many cases of UAV 

penetration into such protected areas and objects. Particularly, a drone crashed in 

front of the White House lawn in the United States in 2015 due to a drunken 

government official, in Canada in 2017 there was a small plane crash with a drone, 

and in London in 2018, thousands of passengers were forced to cancel flights due to a 

suspicious drone flying over Gatwick Airport [7, p. 3856-1-3856-2]. Several airports 

in the US, UK, Ireland and the UAE experienced major outages in the first few 

months of 2019 as a result of drone detections [17]. Drones are also often used for 

delivery systems, terrorist activities, transportation of criminals, unauthorized use of 

goods in restricted areas such as customs and prisons, among many other things [1, 

p. 862-863; 2, p. 242-243; 18, 19]. Drones can also be used to take photos or videos 

from unusual angles using additional cameras. All these reasons have made it 

relevant to recognize UAVs when they have additional load [20]. This shows that the 

problem of not only detecting a drone, but also simultaneously determining its state 

in relation to loads is relevant. In an attempt to protect people from all these risks, it 

is essential to develop a preventive strategy. For the booming UAV business to avoid 
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abuse and unauthorized use, appropriate regulations and rules must evolve at the 

same pace as technology [1, p. 862-865; 2, p. 243-244; 4, p. 2-3]. Air traffic 

controllers around the world are working hard to reduce the chance of unauthorized 

drone use. These rules and regulations may discourage careless or unskilled drone 

piloting, but cannot prevent criminal or terrorist attacks in protected areas. To form 

an effective approach to this problem, it is necessary to develop technologies that 

provide: 1) detection, classification, and tracking of drones, 2) suppression of drones, 

and 3) collection of evidence on the fact of violation [6, p. 138669]. The scope of 

work on all three tasks is extensive and, in turn, requires individual research 

approaches [6, p. 138670]. And among these objectives, the detection of drones is a 

significant research issue and direction. The detection of these objects is the first 

issue even for the development of preventive measures against the use of drones for 

inept and malicious purposes. Therefore, it is vital to create a system of UAV 

detection. Another significant reason why the issue of detecting the presence of 

UAVs in protected areas is becoming relevant today is the use of UAVs for military-

political purposes at the borders of countries [21, 22]. In general, scientists and 

technical solutions have developed four main drone detection methods such as radar, 

acoustic sensor, visual and radio frequency (RF) signals-based detection [6, 

p. 138678]. In the last decade, general object detection has been widely used by 

artificial intelligence methods, in particular Machine learning and Deep learning 

methods. This is due to the fact that these methods can achieve high results in the 

accuracy of object recognition. Also, the main four methods for detecting unmanned 

aerial objects began to be studied based on these machine learning and deep learning 

methods. And now, if we focus more closely on the task of detection, drones are 

available in different positions, states and models, depending on the purpose of their 

use. If the problem of recognition creates a high level of demand, the question of 

UAV classification to determine their status and types is also put forward. And these 

two tasks are often carried out simultaneously in terms of technical solutions. In the 

task of detecting and classifying drones, Radar technology is considered as a sensor 

that provides accurate identification of a flying object at a long distance and 

performance independent of environmental factors and light levels. Small 

commercial UAVs flying at relatively low speeds along non-ballistic trajectories 

cannot be detected by the radar, since it is primarily designed to identify high-speed 

targets with ballistic trajectories, such as military drones and missiles [7, p. 138678-

138679; 23]. Radar sensors are often used as reliable means of detection, but their 

classification capabilities are unsatisfactory [24]. When a classification problem 

arises, the similarities between the key characteristics of UAVs and birds often make 

it difficult to identify their differences, making this option ineffective. In addition, the 

price is quite exorbitant. In addition, researchers have begun to show great interest in 

the acoustic sensor approach to drone detection. This method is considered to be a 

cost-effective detection system that, using arrays of acoustic sensors or microphones, 

can recognize the distinctive sound characteristics of UAV rotors even in poor 

visibility condition. Machine learning and Deep learning-based acoustic identification 

of drones are new advances in drone detection research. A significant barrier to this 
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study is the lack of enough data on multiple drone models flying at different altitudes, 

speeds, and background noise levels. The proposed acoustic detectors have a 

maximum detection range of 150 meters. However, this is an indispensable solution 

for small strategic areas and borders between countries. And to expand the working 

area of the sensor, there is a solution with a repetition of the sensor, which is cost-

effective [6, p. 138669-138680; 7, p 3856-2-17]. Acoustic methods have a great 

advantage in daytime and nighttime operations because they are independent of 

lighting conditions. Being able to recognize drone states when they have extra 

payload is another great feature. 

The RF approach is another way to identify and classify drones. Based on their 

RF characteristics, drones can be identified and categorized. In addition, the SDR 

approach is gaining popularity in this field. The RF sensor, which recognizes radio 

frequencies, serves as a conduit between the UAV and its controller. When listening 

to UAV controller signals, RF sensors, unlike acoustic sensors, overcome the issue of 

limited detection range by using high-gain receiving antennas in conjunction with 

high-sensitivity receiving systems [25]. The issue of environmental noise is also 

addressed by using some noise cancellation techniques, such as bandpassing [7, 

p. 3856-2]. In the case of detection of drones without RF transmission, low-cost 

camera sensors based on computer vision algorithms and acoustic sensors can be 

used. Drones can be visually detected using camera photos of the scene, and these 

approaches are easy for humans to understand, have acceptable localization, average 

detection range, and reasonable cost. However, this method does not work well at 

night or when visibility is poor due to clouds, frost, or pollution. The use of thermal 

imaging cameras can be a solution to some of these problems. However, for military 

purposes, high-quality thermal imaging cameras are used. Available commercial 

thermal imaging cameras may weaken in high humidity or other adverse 

environmental conditions [6, p. 138675-138676; 7, p. 3856-3-4; 20, p. 26-1-26-5]. 

Each of the areas discussed above has its own successful recognition skills for certain 

areas of interest. In accordance with this, the scope of the method is selected. And in 

this work, we are considering a solution to the problem of incidents or the penetration 

of drones with special cargo, which is considered very dangerous for the life of all 

mankind. The focus of the problem is not the territory and not the range of protected 

areas, but the state of drones penetrating the territory. As we discussed above, the 

acoustic recognition method is an effective solution for recognizing and classifying 

the states of these small UAVs. And in the following subsections this method will be 

widely discussed, and technical solutions will be sought. 

 

1.2 Acoustic data-based UAV detection 

Nowadays, the problem of sound classification of UAVs has aroused particular 

interest in the scientific community due to their ability to detect UAV states in the 

presence of an additional load on them, at different positions or models [1, p. 863; 15, 

p. 453-454; 16, p. 470-473; 20, p. 26-2-26-4]. Thus, this work is aimed at studying 

the problem of UAV sound recognition. Moreover, the importance of this method 

increases due to its ability to estimate distances from the interest areas. The detection 
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of Unmanned Aerial Vehicles (UAVs) in protected areas using acoustic signals 

expands the capabilities of accurate detection of harmful UAVs for timely activation 

of the security system. UAVs are now more widely available due to their affordable 

price and many features, which have increased their use in terrorist and criminal 

strikes. Furthermore, technology has advanced, drone design and development have 

become more affordable, and their potential applications have grown quickly. Drones 

are especially utilized for the purposes such as pesticide delivery, food delivery, 

search and rescue operations, transporting flocks of birds toward airports, small spy 

drones, disaster relief, and agriculture, and the list is continually expanding [3, 

p. 149; 20, p. 26-1-26-3]. Along with the numerous uses of drones in the airspace, 

security concerns are associated with them, such as endangering the airspace itself, 

invasion of privacy, use of vehicles as weapons, corporate espionage, vehicle 

collisions, and drone hacking. One such incident occurred in which terrorists killed 

two soldiers while smuggling explosives using UAVs in October 2016. Prolonged 

use of such weapons can lead to mass casualties in metropolitan areas, where it is 

easy to hit a large number of people [6, p. 138670-138675]. On September 29, 2022, 

a different incident happened when an Alphabet subsidiary Wing delivery drone 

collided with power lines in the Australian city of Browns Plains, knocking off 

electricity for almost 2,000 clients. An unknown drone payload has stalled on an 

overhead power wire. In this case, even removing the drone from the cable turned out 

to be impossible. Although it did not turn off the power, the drone followed the 

voltage until it landed at 11,000 volts, burst into flames, and crashed to the ground. 

2,000 local residents were left without electricity for about 45 minutes, and another 

300 remained without electricity for three hours so that power engineers could check 

the lines for damage [27], figure1a. A number of Amazon's recent drone crashes have 

also been caused by engine and propeller problems [28, 29], (figure1b).   

 

 
 

a                                                    b 
 

a – A loaded drone in the city area; d –A loaded drone on a path of power lines  
 

Figure 1 – Delivery drone crash into power lines 

 

As we can see above, there has been an increase in cases where unmanned 

aerial vehicles (UAVs) have been widely used in hostilities in recent years. The work 

[29] provides an extended list of incidents with drones in the military and other 

different situations. Generally, non-military UAVs have often been implicated in 

incidents where they have endangered aircraft as well as people or property on the 
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ground. Because a swallowed drone can quickly damage an aircraft's engine, there 

have been safety concerns. Several confirmed collisions and hazards have involved 

amateur drone operators, too, who have flown in violation of air safety laws. These 

views claim that the identification and categorization of UAVs will always be of 

paramount importance. And the acoustic sensor method can be an effective solution 

to the problem of drone detection and classification. Due to the advent of 

multifunctional technologies that have allowed drone users to create their own 

drones, and the near impossibility of monitoring them, other methods are impractical. 

The military can identify drones with very sophisticated radar systems, but these 

systems are expensive, and their practical design is not suitable for urban 

environments. In addition, there are a number of integrated commercial solutions that 

use various complex sensor systems such as radar, RF, cameras, and thermal sensors 

[3, p. 149-160; 6, p. 138682; 7, p. 3856-3-3856-7; 20, p. 26-20-25]. But the drone 

incidents mentioned above require the definition of models or types, distances of 

drones to objects, and their loads. And the acoustic sensor method is suitable for the 

optimal solution of these problems from a technical point of view. That is, if drones 

are studied by their sound signatures, then it is technically possible to determine their 

model, state, and position. This is because different drone models have different 

motors that make different humming sounds, which in turn produce different 

frequency responses. As a result, enough data can be collected for processing using 

deep learning methods in artificial intelligence. Also, if the drones are loaded with 

special mass, even if they are the same model, the sound data will change due to the 

weight on its engine. Summing up the mentioned factors and possibilities, the study 

of sound recognition by drones shows that this is an effective solution. The use of 

deep learning and machine learning methods, which are modern and productive 

branches of artificial intelligence, is considered the most reliable solution for 

processing such collected data. The recognition of these objects based on the 

collection of a sufficiently large number of quantitative patterns and data from the 

same object with high accuracy can be achieved by training their patterns using 

neural networks.  

 

1.2.1 The Role of Classification for UAV Acoustic Data Recognition 

Activities conducted outside and indoors, whether they include human or non-

human activity, almost always contain sound. Technically, sound recognition 

problem is difficult since the signal is dynamic and complicated, but interest in sound 

research is growing because it has the potential to develop a variety of applications. 

Indoor sounds refer to more specialized environments including corporate, 

residential, and educational settings, whilst outdoor sounds might encompass ambient 

and urban surroundings. Applications for analyzing human-produced sounds include 

Automated Speech Recognition (ASR), Speaker Identification (SID), and Music 

Information Retrieval (MIR). And the sounds produced by moving objects can be 

called sounds caused by the impact of these objects and vehicle engines. Such 

transport objects may include cars, types of motorcycles, trains, aircraft and drones. 

Recognition of the sounds of these objects for security purposes is also one of the 
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important issues. In order to support sound recognition, machine learning has been 

utilized, including both "conventional" (classical) techniques and deep learning. And 

the most key question for sound recognition with these machine learning methods is 

the processing of sound signals. Signal framing is a component of sound 

preprocessing. It can be difficult to choose the frame length that will both fully 

capture the sound of interest and exclude other sound kinds. Thus, traditional 

machine learning methods and deep learning are the foundation of good sound 

recognition research. Sound features are extracted and incorporated into standard 

machine learning algorithms. The features of sounds are based on their acoustic 

characteristics, such as loudness, pitch, and timbre. Spectrograms, Mel spectrograms, 

Mel-Frequency Cepstral Coefficients (MFCC) and their derivatives are also often 

used as cepstral features. The focus of this dissertation work is the recognition of 

sound differences of objects. And the recognition of sounds coming from common 

objects has become one of the most effective ways to identify them by classifying 

them. And in the case of this classification, a number of scientific papers have 

confirmed that it is possible to achieve good recognition by effectively processing the 

mentioned acoustic characteristics of the sound signal. Deep learning techniques for 

sound recognition have recently become the subject of considerable research. Deep 

learning techniques differ from the conventional application of classical techniques in 

that in the former, a pool of values from the time, frequency, and perceptual domains 

are retrieved and fed into ML algorithms. The following chapters will analyze the 

efficient processing of the acoustic parameters of the sounds of drone objects and the 

research of recognition with deep learning. 

 

1.3 Related works on UAV sound detection and classification methods 

Generally, unmanned aerial vehicles (UAVs), as was previously said, pose a 

serious threat to public spaces like parks, schools, hospitals, and government 

facilities. Different drone-detecting tactics are getting more and more active. 

Researchers are particularly interested in the detection of UAVs using their acoustic 

signals since it is less expensive than other conventional options and can solve more 

scrupulous issues. Therefore, specific researchers in this field believe that using an 

acoustic signal print to investigate a drone detection system is an effective technique 

[30, 31]. This section focuses mostly on investigating cutting-edge scientific methods 

for recognizing drones by their distinctive acoustic signal fingerprints. That is, a 

review of the literature is given on various analyzes of already used drone sound 

detection systems that are being studied and used to solve the complex problem of 

determining the speed and unstable state of these small-looking vehicles. As we are 

all aware, the four key areas where the drone detection system is being developed are 

radar, computer vision, acoustic sensors, and radio frequency sensor systems. 

Organizations in charge of air traffic control are working hard to lessen the risk posed 

by drones. The use of drones that is irresponsible or untrained may be stopped by the 

current restrictions, but attacks by criminals or terrorists will still happen [6, 

p. 138670-138673]. Accordingly, scientists are intensively searching for an effective 

method of “Drone Detection System” that meets the requirements of emerging tasks 
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and prevents attacks of all types of threats. High performance results are being 

produced by efficient systems that fulfill these needs and objectives while using 

machine learning techniques, which are impacted by the quick advancement of 

contemporary research. Additionally, it has developed into an intriguing, 

complicated, and difficult topic of technology to solve utilizing Deep Learning, a 

subset of Machine Learning that is being investigated extensively. Most of the 

research relies on standard machine learning methods (including KNN - K Nearest 

Neighbor, SVM - Support Vector Machine, Random Forest, etc.), while the most 

recent research demonstrates the need for deep learning methods. In order to respond 

to the scientific inquiry regarding potential threats, this work has only selected and 

examined one particular direction from drone detecting systems. In other words, the 

central scientific issue is the detection system required for drones in their most 

hazardous situations, such as when they are flying in specific locations with extra 

load or in specific positions. Within the framework of this question, it was considered 

that among the four methods of drone recognition, acoustic sensors are the most 

effective method. It is also assumed that this method is effective for the operation of 

the system regardless of environmental factors in the task of detecting dangerous 

drones [31, p. 1-2]. According to the development of study in recent scientific works, 

the technological direction of the acoustic method is split into two main distinct 

regions: Drone detection and localization [6, p. 138677; 31, p. 302-303], (figure 2).  

 

 
 

Figure 2 – Directions of the acoustic sensor method for UAV detection  

 

Additionally, (figure )1 in work [5, p. 2-3] classifies and illustrates the 

methodologies used by these two branches. This section provides an overview of 

acoustic approaches, including a thorough examination of the detecting field within 

the context of machine learning and deep learning, in contrast to the research work 

[6, p. 138674-138675], which gives a comprehensive overview of all forms of drone 

detection systems (hereinafter, if "detection" or "localization" is considered, that 

these are methods based on acoustic sensors). The following primary goals are 

distinguished by techniques like machine learning or deep learning for a 

comprehensive solution to the drone detection problem: a - a binary classification, 

indicating whether a drone is present in a specific area; B. Multiple classification, 

including loaded and unloaded, with transport of goods (for instance, cargo 0.5 kg, 

box, damaged box), without transport of goods, or classifications for various drone 
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models. Analyzes of scientific papers related to acoustic sensors based on machine 

learning and deep learning were carried out (table 1). And research on individual 

methods of each direction is discussed in the following sections. 

 

Table 1 – Analyzes of scientific works related to acoustic sensors 
 

HMM, GMM; 

Machine learning 

SVM 

Deep Learning 

CNN 

Deep Learning 

RNN 

DL: RNN - 

CNN 
DL: CNN-RNN 

 UAV load estimation 

with CNN  

   

 Multispecies 

classification with 

CNN: distinguishing 

unloaded and loaded 

drones 

   

 Multiple 

classification with 

CNN  

   

Classification with 

PIL, KNN  

    

  Multiple 

classification  

  

   Multiple 

classification  

 

Binary 

Classification with 

GMM  

Binary Classification 

with CNN  

   

 Binary Classification 

with CNN 

Binary 

Classification 

with RNN  

Binary 

Classification 

with CRNN 

 

Multiple 

Classification with 

HMM  

    

Classification with 

Random Forest  

    

Classification with 

SVM  

    

Complex methos on 

Classification with 

SVM 

    

Note - Compiled according to the source [1, p. 863-865; 2, p. 241-244; 3, p. 3-148; 4, p. 2-

4; 15, p. 452-457; 16, p. 471-473; 26, p. 1858-1860; 32-36] 

 

The literature review focused on research done with acoustic sensors using 

machine learning and deep learning methods. The results of the discussion proved, as 

can be seen from the table, that Deep Learning methods provide high performance, 

and among them only the CNN network has been studied more. And very little 

research has been done by other authors on RNNs with binary classification. A 
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scientific study was carried out on the LSTM network, which is a type of RNN 

network, and published [15, p. 456-457; 16, p. 473]. From this we can see that a 

complete study of RNNs by other authors has not been carried out, although RNNs 

have been successfully used for audio signals. However, drone sounds must go 

through preparatory processes that can be taken into account during training in order 

to apply these algorithms. Namely, the acoustic structure of the UAV detection 

system consists of the following main parts: data preparation, preprocessing and 

classification. Data preparation is associated with the collection of acoustic data from 

various types of UAVs using acoustic sensors, i.e., microphones. Pre-processing 

considers getting ready audio data to the Network by extracting features from audio 

representations. The classification task concerns training datasets using machine 

learning or deep learning methods [15, p. 454]. And the following sections discuss 

literature reviews related to these parts: pre-processing methods that prepare input 

acoustic data for neural networks, machine learning, and deep learning methods. 

 

1.3.1 Pre-processing methods of the UAV acoustic data recognition system 

A branch of computational sound analysis called classification of 

environmental or objects sound events aims to build intelligent machine listening 

systems that can recognize acoustic situations that are familiar to human listeners [3, 

p. 3-145]. And intelligent machine listening systems require technically to perceive 

these sounds in a special format, which is called pre-processing of audio signals. The 

pre-processing phase is extracts features from the UAV's acoustic representations. 

That is, acoustic data must go through a number of pre-processing procedures before 

analysis, just like any other unstructured data type. Basically, to analyze sounds, two 

different types of features are used: Time domain features and frequency domain 

features. Most studies have shown that time domain analysis is insufficient for 

machine learning. As a result, processing in the frequency domain has become more 

widely considered. The amount of processing space needed is greatly reduced when 

data is provided in the frequency domain. As a result, the sound signal is divided into 

different pure signals, each of which can be represented by a different value in the 

frequency domain [38]. Basic operations from Fourier transform analysis, continuing 

with spectrograms, filterbank coefficients, Melspectrograms, and MFCC, are used to 

obtain frequency features [6, p. 138678; 15, p. 454; 16, p. 473; 18, p. 127; 39]. 

Figure 2 [6, p. 138677] shows a visual representation of these categories of audio 

characteristics that can be extracted for analysis as a whole. Due to the complexity of 

the signal, processing using spectrograms, filterbank coefficients, Melspectrograms, 

MFCC frequency domain approaches, or other extra filters is also taken into 

consideration in many research. 

 



 

19 

 

 
 

Figure 3 – Types of features during preprocessing of audio signals 

 

As a rule, processing of signals in the time domain is mandatory, since the 

entire range of information domain of signals can be explored in the time domain. 

Since it is difficult to process audio signals recorded by microphones, after defining 

the information domain in the time series, the frequency domain is further 

considered.  

Since the audio signal is continually changing over time, these components are 

presumed to be constant if the area value is obtained over a short period of time, 

which is another reason to take into account the frequency domain. A short-time 

Fourier transform (STFT) was used to retrieve these constant portions. The linear 

frequencies are then transformed into logarithmic frequencies and analyzed using the 

Mel scale. A filter serves as the basis for filter banks. The filter bank coefficients are 

protected from energy decorrelation using the discrete cosine transform (DCT). It 

compresses all information to lower frequencies. MFCC coefficients (Mel Cepstral 

Coefficients) are obtained as a result. Melspectrograms can be acquired as an 

alternative [40, 41]. Numerous studies in this area have demonstrated superior MFCC 

frequency response performance for audio classifiers. MFCC provides useful 

qualities, especially for capturing the periodicity of the fundamental frequencies 

produced by the drone's rotor blades. The authors of [26, p. 1859-1860] captured and 

displayed the sound of a drone using MFFC functions in an audible harmonic 

structure. The authors also noted a distinct area of effect on the spectrogram between 

5000 Hz and 7000 Hz. But not every drone model used in their tests included these 

features. In terms of energy, low frequency data travels farther than high frequency 

data. Because of this, the authors only examined low frequency data below 1500 Hz. 

The smallest audio data length converted to an MFCC vector that performed 

optimally with the GMM configuration was 40ms with 50% overlap. When 

processing data of at least 240 ms length converted to a Melspectrogram with a Mel-

bin of 40, the other models, CNN and RNN, have demonstrated the best performance 

as 80.09%. While the task can identify drone sounds, it is constrained by its inability 

to provide a high accuracy score and by not considering the drone's state, such as its 

load. The authors of the work [1, p. 864-865; 42, 43] investigated and used the 

extraction of MFCC and STFT functions from an optimized system with several 

acoustic nodes. In [33, p. 510-515], a method for recognizing drones by the sounds 

made by their propellers was proposed. This method used the Mel frequency cepstral 
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coefficient (MFCC) method for feature extraction for classification. The first of two 

feature extraction algorithms, which also adds dynamic features, uses twenty-four 

MFCCs and a forecasted thirty-six MFCCs. And the authors in [6, p.188677; 18, 

p. 127-129] used a variety of feature representations based on signal processing 

methods, comprising pitch, energy, zero-crossing rate, mean-crossing rate, 

spectrogram, Mel-frequency cepstral coefficients (MFCC), Mel logarithmic 

spectrum, and Spectrogram extensively. 

 

1.3.2 Machine Learning algorithms for UAV acoustic data recognition 

A drone in flight makes a buzzing noise that acoustic sensor may record and 

analyze using various techniques to determine unmanned aerial vehicles sound 

pattern. Machine learning classification or correlation/autocorrelation approaches are 

used for acoustic drone recognition in the initial studies in this direction [6, 

p. 188677-188678]. A feasibility study for drone detection from sound was given by 

Nijim and Mantrawadi [6, p. 188670-188675; 44]. To find the DJI Phantom 3 and 

FPV, they used a Hidden Markov Model. To identify a drone within 150 meters, Jeon 

et al. suggested utilizing the Gaussian Mixture Model (GMM), CNN, and RNN 

classification [26, p. 1859-1860]. By combining various environmental noises with 

uav sounds, the authors proposed constructing datasets in order to solve the paucity 

of audio features for flying drones. Using various uavs to train and evaluate the 

classifiers seems to be an intriguing component of their research. They discovered 

that the RNN classifier outperformed the others (80%), GMM (68%) and CNN 

(58%), respectively. With unknown data, although, all classifiers perform noticeably 

worse. To distinguish the drone noise from other signals like crowd and daily nature 

sounds, Bernardini et al. employed a multi class SVM classifier [6, p. 188672-

188675; 37, p. 61-63]. To use an audio file extractor, the task involves gathering web 

sound data with an emphasis on files with sampling rates greater than 48 kHz. The 

dataset comprised five 70-min UAV flight sounds, together with audio from daylight 

nature, busy streets, passing trains, and crowds. Then, the acquired data were divided 

to overlapping 10-ms chunks lasting 5 seconds for midterm analysis and 20-msec 

subframes for short-term investigation. In order to train a Classification model, the 

authors have provided characteristics from pre-processed data, including short time 

energy, temporal centroid, Zero Crossing Rate (ZCR), spectral centroid, spectral roll-

off, and Mel – Frequency cepstrum Coefficients (MFCCs). 96,4% accuracy was 

achieved when comparing the results for detecting the drone sound to the other 

categories. In order to identify the DJI Phantom 1 and 2, Kim et al. [39, p. 544-547] 

suggested employing correlations, spectrum representations of sounds, and k-nearest 

neighbor (KNN) classifier techniques. Various audio signals have been captured from 

the UAVs inside (without propeller) and outdoors, as well as from a drone-free 

outside area and background noise from a YouTube video. Each recorded sound was 

divided into frames of one second in this work. Image correlation produced accuracy 

of 83%, and KNN produced accuracy of 61%. An acoustic wireless sensor network 

(WSN) with machine learning (ML) was used by Yue et al. to construct a distributed 

system that could detect UAVs and determine their approximate location [45]. The 
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scientists conducted a number of studies and discovered that the unmanned aerial 

vehicles sound's PSD differs from other ambient noises. After prepossessing an 

unmanned aerial vehicles sound using a lowpass filter (LPF) with a cutoff frequency 

of 15 kHz, the PSD is derived using the Fast Fourier Transform (FFT). The outcomes 

of the study demonstrated that the audio signal may be filtered to remove unwanted 

noises at around this cutoff frequency. A PCA-based dimension reduction method 

was used to train an SVM classifier to distinguish the drone sound from other sounds 

(rain, ambient). The database was compiled from many classes, each of which has 

20,000 samples. Subsequently, 2000 tuples have been arbitrarily chosen and divided 

into 50, 30 and 20%, that were utilized for validation, training, and producing 

overlapping signals for subsequent testing. For the test case with a signal to 

interference ratio (SIR) greater than 10dB, supplementary Gaussian noise has been 

applied. The results show that this amount of injected SIR or higher was effective in 

detecting the drones. Seo et al. suggested using the normalized STFT to extract 2D 

pictures from the audio signal of drones [6, p. 138671-138678; 46]. First, 20-ms 

segments with 50% overlap were created from the acoustic source. A method with 

numerous calibrated acoustic nodes was suggested by authors of [47] to extract the 

MFCCs and the STFT characteristics. The characteristics were then used to train the 

SVM and CNN classifiers, two types of supervised classifiers. The CNN structure 

provided for the representation of the sound signal using 2D images. This model 

included pooling and dropout layers, as well as two convolutional layers, two FC 

layers, and four full layers. During the initial instance, the drone had a maximum 

range of 20 meters and also was flying between 0 and 10 meters above the 6-node 

acoustic apparatus. In another instance, data collection took place without the use of 

an UAV, and the only sound recorded was background noise. The Parrot AR Drone 

2.0 was the one of the UAV models examined [6, p. 138678]. 

 

1.3.3 Deep learning algorithms for acoustic data recognition 

The possibility of sound understanding similar to human could lead to a wide 

range of applications, such as intelligent machine state monitoring, using acoustic 

information, acoustic surveillance, categorizing, and information extraction 

applications. Environmental sounds are more varied and cover a wider frequency 

range than speech [18, p. 127-128; 19, p. 456-458]. And the majority of the existing 

research on sound recognition relies on conventional classifiers like GMM and 

machine learning methods, which lack the feature abstraction capabilities present in 

deeper models. And in works such as [18, p. 128], which extensively studied audio 

signals, the results of successful analysis of the frequency content were achieved 

using deep learning algorithms.  

The authors concentrated on the problem of classifying an acoustic scene, 

which involved selecting a semantic label to describe the acoustic surroundings of an 

audio stream. Modern deep learning (DL) architectures have been applied to a variety 

of feature representations generated using signal processing methods. They utilized 

the following designs, specifically: 1. Deep Neural Network (DNN). 2. Recurrent 

Neural Network (RNN). and 3. Convolutional Deep Neural Network (CNN). The 
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following models were also investigated in combination: (DNN, RNN and CNN). 

Along with i-vectors and the mixed Gaussian model (GMM), we also contrast DL 

models. The authors found that deep learning models compare favorably with 

traditional pipelines (GMM and i-vector). In particular, GMM with MFCC function, 

the base model achieved a test accuracy of 77.2%, while the best performing model, 

which is a hierarchical DNN, achieved a test accuracy of 88.2%. RNNs and CNNs 

typically have performance in the 73-82% range. Combining temporary specialized 

models such as CNNs and RNNs with specialized resolution models (DNNs, i-

vectors) greatly improves overall performance. The fact that the most efficient model 

is a non-temporal deep neural network model suggests that environmental sounds do 

not necessarily exhibit strong temporal dynamics. This is consistent with our 

everyday experience that environmental sounds tend to be random and unpredictable 

[18, p. 127-129].  

Recent research into drone sounds is ongoing in deep learning networks. This 

is because the results of CNN networks in this area were with high recognition 

accuracy. One of the successfully studied work in the field of UAV sound recognition 

[26, p. 1859-1861] showed the best performance as 80.09% with the use of CNN and 

RNN algorithms. Their research looked into how a deep neural network may be used 

to identify commercial hobby drones in actual environments by examining their 

acoustic data. Their work was intended to aid in the detection of drones used for 

nefarious purposes, like terrorism. In specifically, they made an effort to outline a 

technique for detecting the existence of commercial hobby drones as a binary 

classification problem based on the detection of sound events. To cover the gap in 

drone sound data in diverse contexts, they recorded the sounds made by a number of 

well-known commercial hobby drones. They then supplemented this data with a 

range of environmental sound data. The effectiveness of these models was evaluated 

by empirical research on a test dataset gathered from a city street. Their RNN models 

thus had the best detection performance, with an F-score of 0.8009 at 240 ms of input 

audio and quick processing times, demonstrating their suitability for real-time 

detection systems. However, this work did not undertake the study of drone states. 

The study [32, p. 460-463] attempted to offer approaches for identifying and 

detecting drones utilizing deep learning tools as convolutional neural networks, 

recurrent neural networks, and convolutional recurrent neural networks (CRNN). In 

order to locate and identify flying drones, these algorithms took advantage of their 

distinctive acoustic signatures. Based on their dataset, which contains audio 

recordings of drone movements, they suggest comparing the effectiveness of various 

neural networks. The main contribution of their work is to give a robust evaluation of 

the performance of various deep neural network algorithms for this application and to 

confirm the utilization of these approaches of drone detection and identification in 

real-world scenarios. The paper attempted to demonstrate the ability to identify drone 

models with a maximum recognition rate of 93.83%, but did not address the study of 

other suspicious drone positions. As can be seen from the works discussed, most of 

the advanced work on the study of sound recognition by drones has been carried out 

using deep learning neural networks, and in the works on binary classification or 
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classification of several UAV models, networks with CNNs have been carried out 

using high performance. However, these works did not represent an extended task. 

And one of the successful and large-scale works in this direction is the study of the 

RNN network with the highest score among other algorithms [32, p. 463-464]. But 

this work did not take into account the state of the UAV. As a result of all the 

ongoing work, the widely studied deep learning algorithms have evolved as shown in 

figure 4. 

 

 
 

Figure 4 – The most studied networks in deep learning for UAV detection 

 

During the research phase of this dissertation, an experiment was conducted 

using a CNN network and published based on that experimental work. When 

studying publications [1, p. 865-866; 2, p. 244], which are analogues of the research 

of this dissertation, new CNN network structures were processed, adapted to the 

newly created database, table 1 in Appendix A. When developing layers in the model 

structure (CNN) used in the publication [48], a final BatchNormalization layer was 

added to the fuzzy layers as a method of stabilizing the operation of artificial neural 

networks and improving their performance. Since the project is based on 3 classes, 

the softmax function and the filter size of 3 were used. And the 

“sparse_categorical_crossentropy” function was taken as the system loss function. In 

the experiment of the research paper [48, с. 42-43], 2 different databases were 

considered. The first database was compiled based on the complex background noises 

of the drone sounds of the DJI Phantom 2 system. The DJI Phantom 2 model is 

widely used to detect payload drones and is a vehicle capable of carrying 0.5 kg of 

payload compared to the DJI drone Phantom 1. When recording sounds, situations 

with complex sounds (wind, motorcycle, train and cars) were considered. 

Consideration in such a complex situation is the main focus of this study. This is 

because building a robust system for real-world applications requires separating 

drone flights from other superimposed complex noises. The second base is 

supplemented with the sounds of the DJI Phantom 1, 2, 3, 4 drone models, as well as 

the acoustic signal data of the Syma x5, x20, Tarantula drones, which are widely used 

as children's toys, and other types of drones in open areas. These databases have been 

validated against two different CNN model structures set out in table 1 in the 

Applications section. In general, both databases were divided into three parts: 60% 

training, 40% verification and 40% testing. The data in the test and validation parts 

were not pre-trained by the model. The results of training and testing data using 
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model estimation (model estimation) are shown in figures 5, 6, and test data using 

model prediction.  

 

 
Figure 5 – Accuracy and loss models for the initial database of training using CNN 

 

This demonstrates that as the database grows, the neural network recognition 

system's identification accuracy has an optimal performance score and the ability to 

train the model, as shown by the second graph. 

 

 
 

Figure 6 – Accuracy and loss models for the modified database of training using 

CNN 

 

At this stage, a feature vector of randomly selected items in the test data, i.e. 

audio image data values, is presented in table 2 to accurately represent the prediction 

results. The main goal is to test the system created as in works [1, p. 863; 2, p. 243] 

against a database of many different drone models, to study its reliability in a real-

time system, and to identify the main problems.  

 

Table 2 – The results of the study of CNN models in the publication  
 

Dataset MFCC size Models Accuracy 

Dataset I  

(DJI P2) 

(63, 20, 1) CNN by [1] 94.41% (100 epoch) 

CNN by [2] 89% (20 epoch) 

Dataset II (Many 

models of UAVs) 

(63, 20, 1) CNN by [1] 96.1% (50 epoch) 

CNN by [2] 81% (30 epoch) 

Note – Compiled according to the source [48, p. 41-42] 
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The study in this publication required the addition of several layers of CNN 

work and many more epochs, using data from a newly collected database to test the 

new target. This showed that the study with the CNN model is limited by such 

reasons as a large number of trainable parameters and the use of excess time for 

training them. Considering the above studies, it was noticeable that with the help of 

an acoustic signature, it is possible to perform a binary classification of the UAV, as 

well as determine the load of the drone. In the course of which a research task was 

carried out on two targets in the form of a publication: the first goal was to create a 

classification system with many models, and the second goal was to research LSTM 

one of the types of RNN, that is, the development of a multi-level bidirectional long-

term short-term memory (LSTM) with two hidden layers to categorize the sounds of 

multiple UAVs. The collected data used in the research in [16, p. 471] was gathered 

for three primary classes of multiple UAV detection, including background noise, the 

sound of unloaded drones of different models in the scene, and loaded drones in the 

scene, (figure 7).  

 

 
 

Figure 7 – UAV audio data distribution  
 

Note – Compiled according to the source [16, p. 471] 

 

 

 
 

Figure 8 – UAV audio data distribution  
 

Note – Compiled according to the source [15, p. 454] 
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This research project's primary objective was to create a multi-label 

classification system. It is a classification challenge for many labels due to the 

dataset's architecture (figure 8). A frequency of 44100 Hz and a microphone bit depth 

with a resolution of 16 bits were used to record UAV sounds (DJI phantom I, DJI 

phantom II, Syma x20, 6 axis Gyro, tarantula, etc.).  

Uncompressed WAV files have been used to store the audio recordings. 

Additionally, the set of data included 3 primary classes for all audio data: "loaded," 

"unloaded," and "no drone". Modeling clay weighing 0.5 KG is carried as a 

supplementary payload by "loaded" class UAVs. The "P1" class of UAVs was 

designated as the "unloaded" class so the testing findings indicated that they are too 

fragile to support any sizeable load. 

This research's secondary objective was to construct a Recurrent neural 

network. The model has an input layer, four input dense layers wrapped in 

TimeDistributed layers, two stacked bidirectional LSTM layers, a dropout layer, a 

flat layer, and a dense layer. Bi-directional layers are used to enclose hidden LSTM 

layers. The hidden LSTM layer employed 128 memory cells [49-52]. 

This computation process is completed by multiplying by two by the 

bidirectional shell, which adds another layer. The "categorical crossentropy" loss 

function is tailored for the multi-label classification problem in the implementation of 

the suggested model. The weights are optimized using the "Adam" gradient descent 

implementation, and then during model training and validation, the classification 

"accuracy" is determined. According to the model's evaluation, the network's 

predicted skill on training dataset was 94.02%. The best precision, however, was only 

attained in epoch 49 with an accuracy of 94.09% in 57 s, which presents a challenge 

for the creation of real-time systems [15, p. 457]. As a follow-up to the work from 

[15, p. 457-458], the construction of LSTM architecture with a mixture of 

Convolutional Neural Networks (CNN) for UAV sound categorization challenges 

was examined further in [16, p. 471]. As a result, utilizing the LSTM-CNN 

architecture, the study [16, p. 472] tackled the issue of categorizing a UAV's sound 

with several labels.  

 

 
 

Figure 9 – MFFCs on UAV audio data  
 

Note – Compiled according to the source [16, p. 472]  
 

The suggested architecture consists of CNNs and Stacked Bidirectional LSTMs 

that have been tested on UAV MFCC representations, (figure 9) [15, p. 472; 16, 
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p. 455]. According to this experiment's conclusions, employing Stacked BiLSTM and 

CNN model, Figure 1 in Appendix B, together produced results that were more 

accurate than utilizing either architecture individually. 

However, all studies carried out so far have given high results only on the basis 

of recognition with many epochs. And the Loaded UAV class had an insufficient 

database. And the limitations of the works [15, p. 457; 16, p. 473] are that the correct 

area of the graph does not stop in the history of the recognition graph. As a result, the 

flow of research continued. And in the next part, an extended statement of the 

problem of the second study in this direction is considered in order to supplement all 

the limitations and shortcomings. 

 

1.4 Problem Statement: The protection system for strategic areas from 

unidentified UAVs based on acoustic recognition 

As a result of their many recreational uses, delivery systems, military strikes, 

reconnaissance, and cross-border political objectives, UAVs are gradually becoming 

more significant. Additionally, there are terrorist operations and criminal smuggling, 

including the smuggling of items through borders, restricted locations, and prisons. 

The issue of drones being used widely and illegally to take pictures or videos from 

unusual perspectives [1, p. 863; 2, p. 243; 3, p. 149; 6, p. 138670; 7, p. 3856-2] is 

also brought up. As a consequence, it is critical to identify drones that are loaded. 

Based on the results of the literature review, it can be concluded that the drone 

recognition systems investigated thus far have attempted to address the issues of 

binary classification, classification that distinguishes between various models, and 

classification that establishes the load of only one model. Further reporting of 

incidents using drones requires a serious investigation to determine their states, 

positions, distances in the case of different models in real-time. 

 

1.4.1 Suspicious UAVs with high-risk cases: Loaded and Unloaded UAVs 

Cases such as the case of a drone with a load that fell on high-voltage power 

lines, Amazon drones that flew into a technical fault during transportation, the 

incident in China of drones that were launched to throw fireworks and fell on people 

during a holiday, the frequency of suspicious drones that are often launched in 

various countries for the purpose of military intelligence show that the suspicious 

cases of drone use are becoming more frequent. And promotes their timely 

identification in protected areas where human life is important. Their use with 

harmful loads in the transportation of contraband goods poses a great danger. Drones, 

which are used as additional weapons or for special reconnaissance, are considered a 

factor that raises suspicions, especially for densely populated areas and strategic 

territories. At the same time, drones that are used as an interest or hobby are often 

loaded with additional power banks for long flights and high-resolution cameras for 

taking high-quality pictures and videos. In one of these situations, there is a risk of 

being managed clumsily. Falling into an occupied or hazardous area, whether due to 

inflexible management, can result in significant losses. As a result of these incidents, 
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the problem of both loaded and unloaded drone recognition is very important, and in 

turn, there is a need to develop a system for recognizing both. 

 

1.4.2 UAV distance Identification 

Human life is a vital factor that needs to be protected at the highest level and at 

the right time. That is why there is a need to protect densely populated areas and 

identify factors that cause suspicion in that area. One of the most dangerous of these 

suspicious factors is the presence of suspicious drone flights in these areas. And in 

order to prevent this danger, the issue of timely detection of suspicious drones in the 

region and its implementation in real time is put forward. And if the drone flight is 

found in protected areas, the problem of determining how far they are from people, 

objects and important buildings becomes secondary. 

 

1.4.3 Multiple model UAV recognition 

If drones are found flying in protected areas, there is a need to determine their 

condition or, in some situations, what model they are. In cases where they are found 

to be suspicious, it is necessary to assess exactly which models have been launched 

and how much damage they pose. The reason is that UAV models are predictable in 

terms of how much damage they can cause 
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2 UAV ACOUSTIC DATA PREPARATION 

 

2.1 UAV sound recording in different positions and models 

In the process of researching suspicious UAV actions, it was proposed to create 

a more reliable detection system for these aircraft based on the recognition of UAV 

acoustic data, which could identify their sounds in a variety of situations, including 

their loaded states. The proposed acoustic UAV detection system aims to develop an 

intelligent audio sensor capable of detecting the appearance of UAVs in certain areas 

or territories of interest in real time by their sounds if they are flying or if they are 

flying with an additional load. The next two stages make up the development of this 

system: preparation of UAV acoustic data for various models and conditions; and 

architecture structure of the real-time recognition system. In this section, the stage of 

collecting acoustic data from the UAV is performed, since the initial database must 

be assigned to start the study. 

The initial stage concerned the preparation of acoustic data from the UAVs by 

recording their flight and their flight with payloads of different models and payload 

weights, as well as at different distances of 0.5 m and 100 m from the microphone, 

(figures 10a, 10b, 10c) [20, p. 26-12]. The recording process of the UAV dataset was 

created by conducting UAV flights with the DJI Phantom 1 and DJI Phantom 2 

models with and without payload at a distance of 0.5-100 m from the microphone, 

(figure 10a). 

 

   
a    b    c 

 

a – Flight of a loaded drone over a field; b – Loaded drone parking; c – Microphone 

placement 
 

Figure 10 – UAV audio recording from DJI Phantom series with payload flying over 

an arable field 

 

The data was collected over several different seasons. A freight train, 

motorcycles, cars, Gator trucks and background noises with human voices were heard 

passing nearby while some of the UAVs were launched. Wind, canopy rustling, and 

other ambient noises were also heard during the testing period, and their data was 

also collected to distinguish UAV noises from false negatives. During recording, the 

DJI Phantom 2 was used to launch a loaded UAV carrying a 0.5 kg payload of 

sculpting clay. The Syma X20 UAV model, which is often used for leisure activities, 

was delivered using a 0.425 kg metal power pack in both loaded and unloaded 

situations. When assessing the load on these recreational or amateur drones, the 
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possibility of harm from a control error from them was taken into account. In 

addition, additional reasonably priced UAV models have been tested for unloaded 

UAV enclosures, including Tarantula x6 and Syma x5c ranging from 1 to 40 meters. 

Other UAV models, including DJI Phantom 1, 2, 3, 4, DJI Phantom 4 Pro, Mavic 

Pro, and Qazdrone, were also launched with parameters as in table 3 and their noises 

were added to the dataset. 

 

Table 3 – UAV model specifications and UAV load states 
 

Models of the UAVs Loading Parameters (kg) Range (m) 

DJI Phantom I - 2 -100 

DJI Phantom II - 2-100 

DJI Phantom II 0.5 unknown 

DJI Phantom III - unknown 

DJI Phantom III 0.454 unknown 

DJI Phantom IV - 2 -100 

DJI Phantom IV 0.4 2 -100 

DJI Phantom IV Pro - unknown 

DJI Phantom IV Pro 1.36 unknown 

DJI Phantom quadcopter - unknown 

Mavic Pro 0.156-0.256 unknown 

Syma x5 - 1-40 

Syma x20 0.425 1-40 

Tarantula x6 - 1-40 

Qazdrone - 0.5-30 

 

All of these UAVs were recorded using 16-bit microphone depth resolution at 

44,100 Hz, moving up and down, forward and backward at varying speeds depending 

on their technological characteristics, starting fairly close to the microphone and a 

nearby parking lot. And the remaining information was gathered from free and open 

resources. The process of collecting audio files from public sources such as 

"www.zaplast.com" and "www.sound-ideas.com" required much more effort. This is 

due to the fact that our prediction system was based on an acoustic sensor capable of 

listening at a frequency of 44100 Hz and a depth of 16 bits, and the sounds of the 

loaded UAV were detected only on amateur videos and processed using a special 

converter at a frequency of 44100 Hz and a bit depth of 16 bits. The rest of the data 

from open sources were also converted from various formats to a sampling rate of 

44000 Hz with 16-bit depth resolution and "mono" microphone mode with the 

extension ".wav". Since our model was created to receive audio data through the wav 

extension. The DJI Phantom 2 and its loaded states were the only UAV model 

considered in earlier studies [1, p. 864-867; 2, p. 243-244] that had this limitation. 

This study aims to investigate the effect of acoustic data from various UAV models 

on the problem of complex UAV sounds and their load states. This study aims to 

investigate how the acoustic data of different UAV models influence UAV load 

recognition across different models and weights. In general, all UAV recording 

information was collected and divided into three categories such as "Unloaded", 

"Loaded" and "Background noise". The three folders include all of these recorded 
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and collected sounds. Recorded drone noises ranged in duration from a few seconds 

to more than five minutes. Table 4 provides a general overview of the duration of the 

sounds collected for each class, in seconds. 

 

Table 4 – Extended UAV sound dataset duration 
 

Classes 
Total Duration, in (s) Train set, in (s) Prediction Set, in (s) 

7612 7312 300 

Loaded UAV 

Unloaded UAV 

Background Noise 

1513 

3334 

2765 

1413 

3234 

2765 

100 

100 

100 

 

UAV sounds from open sources included several sounds in "stereo" mode. 

During the experiment, some of the sounds emitted by Qazdrone, DJI Phantom 2, DJI 

Phantom 4 and DJI Phantom 4 Pro drones were recorded using microphones from 

Apple products such as the Apple iPhone 13B iPad AIR 2020. Using a specially 

created filter, all data files were changed to 44 100 Hz and "mono" mode. 

The next two sections are devoted to theoretical solutions for recognizing these 

initial acoustic database, and the last section explores the development of the system 

itself and its practical solution. 
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3 MATHEMATICAL VIEW ON THE SIGNAL PRE-ANALYSIS STEP 

IN TIME AND FREQUENCY DOMAINS 

 

Generally, sound signal is a complex and non-stationary signal. As mentioned 

above, more recently, studies on sound classification have become interested in a 

variety of machine learning (ML) approaches and methods [53], particularly Deep 

Learning methods. Sound signals are needed to be processed or converted into a 

format that can be used for machine learning or deep learning so that they can be 

classified using these approaches. This initial stage or phase in the classification of 

sound signals using deep learning or machine learning is known as Signal 

Preprocessing or Feature Extraction. In fact, all significant characteristics of the 

sounds of the studied object can be taken into account at the stage of signal 

preprocessing. Sound signals are first examined in the Time Domain to observe the 

duration and amplitude of sounds. First, the concept of sound duration determines 

whether it is simply studied in general or taken into account for real-time systems. 

Furthermore, an investigation in the frequency domain as an initial source also 

requires the characterization of time series. Therefore, it should go without saying 

that every audio signal must first be evaluated in the time domain. And an important 

reason to study in the frequency range is that a wider range of information can be 

seen from this range. And if one looks at time and frequency domain together, one 

can get enough input for machine learning approaches. Such broadly considered 

signal data has its own specific names for each of their steps and their mathematical 

foundations. They will be discussed in the following subsections. 

 

3.1 Foundational principle of sound data representation 

The study of this thesis examines the processing and recognition of object 

sounds, in particular UAV sounds, sounds of various motorized objects and the 

environment. Therefore, this section discusses the presentation of the theoretical 

fundamental representation of the general audio signal and their representation to 

pave the way for the study of acoustic signals that can be produced by various objects 

or backgrounds. 

An audio signal is a representation of any sound, often made up of either a 

series of binary values for digital signals or a changing electrical voltage level for 

analog signals [54, 55]. In essence, sound occurs when an object's vibrations travel 

through a medium and strike the eardrum. In physics, sound is a pressure wave. As a 

result of an object's vibration, the air molecules in its vicinity also vibrate, which 

creates a series of sound waves to resonate across the medium. Vibration of 

motorized objects can be generated by the movement of engine components. And 

UAVs are one of the types of such objects. Sound exists independently of a person's 

ability to perceive it, whereas the physiological definition also takes into account the 

subject's ability to hear, (figure 11) [56].  
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Figure 11 – The process of sound formation and the human perception system 

 

So, a pressure wave is created when an object vibrates, which produces sound. 

The surrounding medium (air, water, or solid) is subject to a pressure wave that 

induces vibrational motion in the particles. The sound is transmitted further through 

the medium as a result of the adjacent particles moving as a result of the particles' 

vibration. Vibrant air particles cause tiny components of the human ear to vibrate, 

which causes the ear to detect sound waves [57]. And the trajectory of these particles 

is similar to a sine waves. In connection with the existence of this physical 

phenomenon, the study of sound in the form of waves is generally accepted. And 

sound waves are often simplified to describe sinusoidal waves that have common 

properties such as frequency, wavelength, amplitude, sound pressure or intensity, etc 

[58-60].  

 

 
Figure 12 – Sine wave representation 

 

The common formulation of sine wave in Figure 12 can be represented as in 

the equation (1): 

 

𝑦(𝑡) = 𝐴sin(2𝜋𝑓𝑡 + 𝜑) = 𝐴 sin(𝜔𝑡 + 𝜑)  (1) 

 

here 𝐴 – amplitude, function’s maximum deviation from zero; 

𝑓 – is the frequency, the quantity of variations (cycles) that take place every 

second of time; 

ω = 2πf is the angular frequency, the rate of change in the function's argument, 

measured in radians per second. 

𝜑 is the phase, indicates (in the radiaons), where in its cycle the oscillation is t = 

0. When 𝜑 is not zero, the whole shape of the wave, apparently, is shifted in time by 
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the number of φ/ω seconds. A negative value is a delay, and a positive value is an 

advance. Since it keeps its wave shape when combined with another sine wave of the 

same frequency and arbitrary phase and magnitude, the sine wave is significant in 

physics. This characteristic is unique to this periodic waveform. This characteristic 

makes it acoustically distinct and contributes to its significance in Fourier analysis 

[58; 59; 60]. 

In general, amplitude and frequency are primary characteristics of sound 

signals. A signal's magnitude, such as the loudness of an audio signal, is known as its 

amplitude. Frequency is the number of times per second that a sound pressure wave 

repeats itself and is measured by Hertz. Since there are a lot of such air particles that 

vibrate in nature due to adjacent particles, and the mathematical sum of several or 

many sines or cosines can represent the sounds of certain objects. The addition of 

several sine waves creates a distinct waveform, which alters the timbre of the sound. 

Towards the human ear, a sound made up of more than one sine wave will have 

audible harmonics. Summing up the mentioned phenomena, we can say that sounds 

are complex signals. Complex signals can be analyzed using discrete time and 

continuous time models. These two different frameworks for simulating variables that 

vary over time. A continuous signal is a signal that varies over time and typically has 

a continuum for its domain. The domain of the function is thus an uncountable set. 

The actual function does not need to be continuous. A continuous-time signal, also 

referred to as an analog signal, is a signal with constant amplitude and duration. 

Every moment of time will have some value for this (a signal). While a discrete-time 

signal, like the natural numbers, has a countable domain. In the same way that sounds 

can be presented discrete signals, discrete systems are what will be created for these 

audio signal processing [59; 60; 61]. The next subsection ensures the study of audio 

signals in the Time Domain. 

 

3.2 Acoustic Data in Time Domain 

Signal processing can occur in any field since auditory signals can be 

represented electronically in both analog and digital formats. Digital processors 

operate computationally with binary representations of the signal, whereas analog 

processors deal directly with electrical signals. The notion of analog and digital 

signals should therefore be briefly examined. Analog sound is electrical. And as 

mentioned above, the voltage level is a sound wave of air pressure. On the other 

hand, the pressure waveform is expressed digitally as binary integers or as a discrete 

function. In its simplest form, digital representation involves the use of computers 

and microprocessors. Since digital signal processing techniques are significantly 

more potent and effective than those based on analog technologies, most 

contemporary audio systems adopt this strategy despite the fact that analog to digital 

conversion can be lossy. Sound storage, or the recording and replaying of sounds, is 

one of the frequently used applications of audio signal processing techniques. Spoken 

voice, background noise, or music can all be represented digitally by leaving 

electrical or mechanical traces on a medium, which can then be used to reconstruct 

the original sound waves. For instance, music was once frequently recorded on CD 
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players, which we can decode back and record a digital version of the audio signal. 

Data compression, commonly referred to as audio coding, is another use for signal 

processing. Reduced storage space needs for audio files and bandwidth constraints 

for digital audio streams are the main objectives here. There are two different types of 

compression techniques: lossless, where no information is lost, and lossy, where 

some information is lost but presumably not any that is crucial for perception. The 

audio file format which called “WAV files” are one type of perceptual audio coder. 

There is another audio encoder that can convert the file into a much smaller file. The 

format of such files is called MP3. This is a very compressed format based on the 

perceptual characteristics of sounds. Recently, audio formats other than this format 

are spreading: AAC, Ogg Vorbis, and FLAC [62]. And for signal recognition, audio 

files are effective in the "WAV" format extension. This is because "WAV" audio files 

contain lossless information. In the study of this thesis, the "WAV" extension was 

chosen during the recording of audio signals based on this reason. Accordingly, the 

first preparatory step is to record the sounds, adhering to these audio file extensions. 

The data contained in these audio files is considered raw data. The signal processing 

starts from this raw data. Sounds, as it is known from its physics, are continuous-time 

signals and change over time. And the processing of audio signals begins with the 

extraction of discrete-time signals. This process is called signal sampling. Sampling 

is the conversion of a continuous-time signal into a discrete-time signal in signal 

processing. The transformation of a sound wave into a series of "samples" is a 

common example. A sample is a signal's value at a certain moment in time or place. 

Hence, a sampler is a component or procedure that extracts samples from a 

continuous stream. A theoretically perfect sampler generates samples at the specified 

points that are equal to the instantaneous value of the continuous signal. So, it is 

possible to get a vector stream from these file types by restoring the original signal. 

That is, the audio signal transmission in the time domain is a long vector [63, 64]. 

And a time series in mathematics is a collection of data points that have been 

indexed, listed, or plotted according to time. A time series is often a sequence that is 

obtained at a series of evenly spaced moments in time. As a result, it is a collection of 

discrete time data [65]. In audio file signal processing, the first step is frequently to 

display an audio sample file as time series data. Any recorded audio signal can be 

displayed in the time domain from the above-mentioned audio files, audio coders or 

compressors. The representation of any audio signal can be taken as a function 𝑥(𝑡). 

And this function 𝑥(𝑡) can be reflected as in figure 13 when they are retrieved from 

the formats of these audio files, audio coders or compressors during audio signal 

processing. 

Thus, sound can be conceptualized as a one-dimensional vector that holds the 

numerical values related to each sample. On a time series plot, these sample values 

can be seen in two dimensions as a function of time 𝑥(𝑡), (figure 13). 

So, the variation of the amplitude with respect to time can be studied in the 

Time Series. It forms a long vector containing acoustic information of a given length 

of time in a time domain. 
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Figure 13 – Representation of the audio signals as a function 𝑥(𝑡) 

 

There is one strict rule to keep in mind when conceptualizing the audio signal 

processing. The sampling rate must be calculated using the Nyquist-Shannon theorem 

when signals with sampled values are considered even in the time domain. The 

Nyquist-Shannon theorem is a crucial link between continuous-time signals and 

discrete-time signals in the field of signal processing. It creates a necessary condition 

for a sample rate that allows a discrete series of samples to fully capture the 

information from a continuous-time signal with a finite bandwidth. The Nyquist-

Shannon sampling theorem offers a requirement for discretizing an analog signal into 

uniformly spaced samples, making it possible to reconstruct the analog signal from a 

discrete signal. It also includes removal of aliasing's effect. The process of aliasing 

blends together several signals. The sampling theorem states that the sampling 

frequency 𝐹𝑠 should be more than twice the maximum frequency component, where 

𝑓𝑚𝑎𝑥 is the maximum frequency component of the analog signal, equation (2). 

 

𝐹𝑠 > 2 𝑓𝑚𝑎𝑥       (2) 

 

And in digital devices that have special programs for automatic processing of 

audio signals, this law is preserved for the sampling rate. It is also necessary to 

perform signal processing while preserving the conditionality of this Nyquist theorem 

in programming environments where machine learning is being studied during 

information recovery from recorded audio file formats and their processing. 

Since the time domain only provides information about the amplitude over 

time, it is not possible to obtain more extensive information. Therefore, by 

considering them in the frequency range, you can get more information needed for 

sound recognition. The next subsection will consider the study of audio signals in the 

Frequency domain. 

 

3.3 Short-Time Fourier-Transform (STFT) 

All of the audible sound signals found in nature can be subdivided into a 

collection of pure sinusoids of various frequencies. A mathematical method known as 

the Fourier transform uses the decomposition of a signal into its individual pure 

frequencies to determine the signal's spectral composition. The generated Fourier 

transform sinusoids for signal as a function of time are a complex value whose 

imaginary portion is the phase shift of the pure sinusoid and whose absolute value is 

the value of the corresponding frequency component. And the audio signal is 

discrete. The discrete Fourier transform, sometimes known as DFT, is the Fourier 

transform applied to discrete signals. In general, the mathematical basis of the 
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aforementioned DFT transform, which helps to move from the time domain to the 

frequency domain, is defined by the following equation (3) below: 

 

𝑋𝑘 = ∑ 𝑥𝑛𝑒
−2𝜋𝑖𝑘𝑛

𝑁𝑁−1
𝑛=0       (3) 

 

Discrete signal transformation can be represented by complex numbers and 

complex trigonometric waves. And the most effective method of calculating the DFT, 

which allows changing the signal from the time domain to the frequency domain, is 

the FFT. A Fast Fourier Transform (FFT) is used to represent the signal in the 

frequency domain and analyze it there, equation (4), [48, p. 39].  

 

𝑓(𝑥) = ∫ 𝑓(𝑥)
∞

−∞
 𝑒−2𝜋𝑖𝑘𝑥𝑑𝑥    (4) 

 

In practice, if a FFT is applied to an audio file of a certain length, it will only 

provide information about the frequency and magnitude of that audio signal. 

Processing a signal in frequency and magnitude alone is not enough to create a 

machine learning data stream. To this end, processing an audio signal while 

simultaneously storing information about its parameters from the time domain and 

the frequency domain makes it possible to obtain information about the extended 

content of that audio signal. The Short-Time Fourier Transform (STFT) helps to carry 

out this data processing while preserving information from the time and frequency 

domains. The audio signal is always a changing signal, so we can assume that it does 

not change significantly during the short intervals in order to simplify the stages of 

processing. For this reason, dividing the length of the input signal into small time 

intervals allows you to extract from them a stream of information associated with 

their frequency. These parts are called frames. Typically, these frames last from 20 to 

40 ms and can be created using this input audio signal. If the frame is much longer, 

the signal is too much fluctuate for the frame, and if it is much shorter, then the 

samples will not be enough to obtain a reliable spectral assessment. This is carried 

out on a theoretical basis using the mathematical method of short -term 

transformation of Fourier, (figure 14). STFT is a Fourier-related transform. It is used 

to determine the sinusoidal frequencies and phase composition of small signal 

intervals, since it changes in time. Let function is presented as any audio signal 

representation, (figure 14). And this function x (t) is performed to divide into a 

certain “small time segments”. Further, the FFT will be calculated for each segment, 

(figure 14). Small segments in figures 14, 15 are selected by a special rule. This is 

called Windowing. A "window" in signal processing is a function (shape) that is 

nonzero for a certain period of time and zero before and after that time. With the 

exception of the nonzero part of the window, where it exposes the other signal, 

multiplying it by another signal results in an output of 0. Windowing is most 

frequently employed in spectrum analysis, which is the process of seeing a brief 

period of a larger signal and examining its frequency content. 
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Figure 14 – The fundamental basis of the STFT calculation process for audio signals 

 

Moreover, windows are employed to produce brief sound fragments that last 

only a few milliseconds. Any finite sound with a beginning and an end can be 

thought of as a windowed piece of time in general. There are numerous window 

forms that are possible such trapezoidal, triangular, polynomial windows, and "sine" 

windows. DFT often employs Hann and Hamming windows [66]. That is, intentional 

small segments of time or frame are obtained with a certain time. This is called the 

length of the frame. This frame length adheres to a constantly accepted stable length 

for all other future segments. The very first frame is taken from the zero point of the 

coordinate with the length of the frame. As stated above, the frame length is between 

20-40 ms. The second frame does not start from the end of the initial frame. The 

second frame will be calculated with a certain time step, which begins relative to the 

coordinate of the starting point. This is called the "hop" step. 

Typically, the "hop" length is 10 milliseconds. This is also called the step size 

of the frame. Thus, the next frames are calculated by this rule relative to the previous 

frames on the basis of sliding until the end of the given signal, (figure 15) in [67]. 

Figure15 shows that the frames are overlapped during the calculation: 

 

 
 

Figure 15 – Visual representation of the calculation of frames 
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And let's take the length of this window vector as 𝑋𝑖. In other words, 𝑋𝑖 is 𝑖-th 

frame of signal 𝑥. Thus, the DFT is calculated for each of these received frames 

according to the sequence. DFT will help to take complex numbers from real 

numbers, equation (5). As a result, it gives a matrix which has 𝐾 size: 

 

Ẋ𝑖 ∈ 𝐶𝐾        (5) 

 

The discrete Fourier transform is quickly calculated with the formula below as 

in equation (6): 

 

Ẋ𝑖(𝑘) = ∑ 𝑋𝑖(𝑛)𝑔(𝑛)𝑒
−𝑗2𝜋𝑘𝑛

𝑁 , 𝑘 = 1, … , 𝐾𝑁
𝑛=1    (6) 

 

Here, 𝑁 is size of the frame signal. And 𝐾 is the number of FTs to be executed 

on entire signal. These results are obtained with frequency indicators, that is, they 

show spectra. The changing spectra are then often plotted as a function of time using 

a tool called a spectrogram. Values obtained according to formula 6 are complex 

numbers. Therefore, the absolute values of these complex numbers are obtained. And 

it gives real numbers, equation (7):  

 

𝑃𝑖(𝑘) = │Ẋ𝑖(𝑘)│2
𝑁
1      (7) 

 

The results obtained are called periodograms. Thus, the basis of audio signal 

processing using STFT while preserving the time and frequency indicators of the 

original audio signal was considered. All these measured quantities are mathematical 

methods of the signal. And neural deep learning networks work on the basis of the 

auditory system of the human ear as a part of artificial intelligence. Therefore, it is 

necessary to process the scale of the studied signal into the logic of the system that 

the human ear works with. This scale is called the Mel scale [20, p. 13]. The next 

section deals with the theory of Mel spectrogram processing.  

 

3.4 Mel-Scale Spectrograms  

A pitch perception scale in hearing system that is established to be evenly 

spaced apart from one another is called the Mel scale (after a hearing). The reference 

point between this scale and the normal frequency measurement is achieved by 

selecting a perceptual step. The Mel scale is created mathematically from the 

frequencies. Equation (8) is used to convert from frequency domain to Mel domain. 

 

𝑚 = 2595 log10(1 +
𝑓

700
)     (8) 

 

In other words, Mel-Scale is a psychoacoustic linear scale representation of 

frequency. Each of the cochlea's membranes vibrates to a certain frequency 

component, acting as a crucial bandpass filter in the human hearing system. Stevens, 

Volkmann, and Newmann suggested the "Mel" pitch unit in 1937 as a way to 
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replicate these characteristics in audio processing [20, p. 11]. Mel is the perceptual 

scale of pitches that listeners perceive to be equally spaced from one another. 

Through a series of investigations, it was discovered that the human auditory system 

perceives signals on a linear scale when they are less than 1000 Hz and on a 

logarithmic scale when they are over 1000 Hz. Mel-main scale's purpose is to put this 

characteristic into context. The Mel scale usually produces Mel spectrograms and, in 

some cases, MFCC coefficient spectrograms. The spectrograms of the MFCC 

coefficient are calculated using DFT from the values of the Mel spectrograms. 

Thus, in this section, the theoretical and mathematical foundations of effective 

methods of audio data processing for deep learning were given. In the fourth chapter, 

programmatic and experimental calculations of these operations are carried out. 

 

3.5 An efficient signal processing proposal: the KAPRE method  

Acoustic signal recognition systems that use classical deep learning typically 

pre-process audio signals and store them in separate folders before they are actually 

trained. These signal processing methods have also evolved in different ways 

depending on the task at hand and the type of signal. In the previous subsection, these 

methods were studied theoretically in detail. The STFT, Filter Banks, Mel 

spectrograms and MFCC were the most efficient methods for processing audio data 

among other methods. As is known from the theoretical considerations from the 

second subsection, audio data is processed in two dimensions, starting from STFT, 

and at the same time, it is known that filter banks, Melspectrograms and MFCC 

matrices are calculated in stages with the continuation of mathematical calculations. 

So, the processed audio data, started from the STFT spectrograms, is two-

dimensional. That is, they contain both time and frequency data. Each spectrogram, 

including the STFT, Melspectrogram, and other spectrograms, has one thing in 

common when examined in further detail: they are all two-dimensional 

representations of the time and frequency of audio signals. They are helpful because 

they separate an audio signal, which is simultaneously a mixture of numerous 

frequency components, into various frequency components. The frequency bins are 

arranged in such a way that they represent only marginally different frequency 

components; this gives them a spatial feature. Since the cochlea is used by humans to 

perceive sound, which also includes frequency breakdown, these spectrograms are 

based on this idea [43; 68]. As mentioned above, these resulting 2D matrices or 

spectrogram images were often pre-processed prior to being trained by deep learning 

methods. This was due only to demand and the search for an effective method among 

them in the last decade. After confirming the possibility of recognizing sound and 

voice, their real-time implementation on a practical solution began to gain great 

demand. However, due to the current demand, their real-time execution and fast 

processing has become an important scientific demand. The authors of [43] 

experimentally realized this scientific question on a practical basis. 

Currently, the task of recognizing sound signals using deep learning methods is 

widely implemented using Keras libraries in Python programming environments. 

Using the Keras libraries, it is possible to process large calculations very quickly 



 

41 

 

using ready-made neural layers. Data pre-processing frequently requires a significant 

amount of time and effort, despite the fact that building deep neural network models 

is becoming simpler with frameworks like Keras that offer pre-built modules. Due to 

its vastness and intricate decoding computations, dealing with audio data presents 

more difficulties than dealing with images or texts. Decoding, resampling, and 

conversion to a time-frequency representation are typically stages included in the 

preparation process for audio data. Resampling and decoding must be simple to avoid 

becoming a major bottleneck. There are many options for implementing "time-

frequency conversion", each with its own advantages and disadvantages. There is a 

trade-off between data storage and computation time, whether frequency conversion 

occurs at runtime in real time or not. Thanks to this, it becomes possible to find the 

ideal audio pre-processing setting, which is its main advantage. While the decoded 

audio samples for each configuration often take up the same amount of memory, this 

can save a significant amount of memory. Therefore, the authors of the work [20, 

p. 11-12; 43] proposed the KAPRE method, which calculates the time and frequency 

representations, which is performed as a layer of Keras. And its calculation will be 

performed when processing on-CPU or on-GPU. One of the key arguments in favor 

of on-GPU audio preprocessing is its simplicity and speed of implementation. A 

preprocessing layer can be added with just one code line. With multiprocessing, it can 

be done on the CPU and might even be faster, but an efficient implementation is 

difficult. The Kapre approach makes the entire training and preparation process easy. 

Specifically, creating a generator that loads the data, decoding (and maybe 

resampling) audio files, saving them in binary formats, and adding a Kapre layer to 

the Keras model's input side. Thus, the mathematical basis of these spectrograms is 

the same, and computing the audio data with the Keras method will ensure efficient 

execution by correctly and properly assigning hyperparameters in a line of code as a 

Keras layer. And the main advantages of this practical solution for calculating these 

matrices are the ability to calculate faster than traditional solutions, and the ability to 

implement coherent learning in the form of adding other neural layers to the deep 

learning flowchart. The Kapre technique experiments were also taken into 

consideration for this dissertation's research. The fourth part goes into greater into 

about it.  



 

42 

 

4 DEEP LEARNING METHODS FOR UAV ACOUSTIC DATA 

RECOGNITION 

 

Sound and speech recognition using neural networks has a long history. Neural 

networks, a subfield of machine learning and the basis of deep learning algorithms, 

are sometimes referred to as artificial neural networks (ANNs) [69]. And the initial 

studies of sound recognition showed that machine learning methods, such as vector 

support machines (SVM), the KNN classification algorithm, K-means and random 

forest algorithm, were studied by a significant pace, as is noticeable from the 

subsection of the literature review. And recent studies were widely used to ensure 

effective results with deep learning methods. The concept of the name of deep 

learning was formed from the thickness of the hidden layers of neural networks. 

Traditional machine learning techniques are dominated by convolutional neural 

networks (CNN), deep feedforward neural networks (DFN), and recurrent neural 

networks (RNN) in difficult forecast problems [20, p. 2-3]. 

In recent years, they have attracted attention with the significant improvements 

in acoustic recognition systems provided by deep feedforward networks. Given that 

sound is inherently a dynamic process, it seems natural to consider recurrent neural 

networks (RNNs) as an effective model. In neural networks, recurrent neural 

networks, are effective models for sequential data [70]. Due to the consecutive 

occurrence of its connected data points, an audio waveform is a sort of sequential 

data. Recurrent Neural Networks (RNNs) are able to learn characteristics and long-

term dependencies on sequences and data over time. If we conduct a comparative 

analysis, CNN's ability to learn sequential dependencies has allowed them to gain 

popularity in applications such as audio processing [42, p. 412-414], speech 

recognition, machine vision, and image, and video captioning. However, audio 

signals are constantly changed over time. The consistent and time-varying nature of 

sounds makes the RNN networks an ideal model for studying the features. Since a 

RNN has a recurrent hidden state, whose activation at each step depends on that of 

the preceding phase, it can handle consecutive inputs, unlike a feedforward neural 

network [49].  

Taking into account the factors discussed above, the study aims to explore 

RNNs in more depth in this thesis. Before studying the RNN network, it was also 

planned to consider the recognition of drone data using the CNN network for 

comparison in a practical basis. The results provided by the CNN architecture, 

explored by previous research work in this area, were compared with the study of 

RNN network architectures. However, the fact that theoretical predictions and 

theoretical knowledge about the recognition of audio signals presupposed the 

effectiveness of the RNN network in advance. So, this section briefly outlines the 

theoretical foundations of CNNs and provides a detailed mathematical description of 

RNN network architectures. 
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4.1 Convolutional Neural Networks (CNNs) in Sound Recognition 

Problems 

Convolutional Neural Networks (CNN) are one of the Deep Learning networks 

used in various fields such as Object Recognition, Computer Vision, Audio 

Recognition and natural language processing (NLP) [31, p. 302]. The primary 

structural characteristic of a CNN is the presence of a standard neural network, which 

consists of a sampling layer and numerous convolutional layers. Convolutional neural 

networks are mostly developed for two-dimensional feature-based image recognition. 

Its input can employ feature layering to accomplish learning and presentation using 

2D images. So, there can be many layers in a convolutional neural network, and each 

layer will learn to recognize different aspects of the image. Each training image is 

subjected to filters at various resolutions, and the result of each convolved image is 

utilized as the input to the following layer. Beginning with relatively basic properties 

like brightness and borders, the filters can get more complicated until they reach 

characteristics that specifically identify the object. It is very capable of learning, 

requires little signal processing, and has been used successfully for handwriting 

recognition, object recognition, face recognition, and sound recognition [71].  

A CNN architecture comprises of three layers: an input layer, a group of 

hidden layers, and an output layer, (figure 16) [72, 73]. It has the three most common 

layers: convolution, activation, and pooling. The foundational component of the CNN 

is the convolution layer. It carries the majority of the computational load on the 

network. With convolution, a series of convolutional filters are applied to the input 

images, each of which activates different aspects of the images. The next layer type is 

activation. With the matching of negative data to zero and the preservation of positive 

values, activation enables quicker and more effective training. “Relu”, “sigmoid”, 

“softmax” and “tanh” functions are the most popular types. Mostly, Activation 

function “Relu” is accompanied by Convolution in CNNs (figure 16). So, any 

intermediary layers in a feed-forward neural network are known as hidden layers 

because the final convolution and activation function conceal their inputs and 

outputs. The convolutional layers in a convolutional neural network are hidden 

layers. A convolutional layer extracts the image into a feature map, also known as an 

activation map. Layers using convolutions transmit their output to the following layer 

after convolutioning the input. This resembles how a visual cortex neuron would 

react to a particular stimulus. Every convolutional neuron only processes information 

for its particular “receptive field”. Although fully connected feedforward neural 

networks can be used to learn features and classify data, this architecture is typically 

impractical for larger inputs (for example, high-resolution images), where it would be 

necessary to use enormous numbers of neurons because each pixel is a significant 

input feature. As well, regularized weights across fewer parameters help prevent the 

disappearing gradients and exploding gradients issues that were present during 

backpropagation in early neural networks. 
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Figure 16 – General architecture of the network 

 

Pooling layer comes next in the list. Using nonlinear downsampling, pooling 

reduces the amount of parameters the network needs to learn while still simplfying 

the output. Convolutional networks may also have standard convolutional layers and 

local or global pooling layers. By merging the outputs of neuron clusters at one layer 

into a single neuron at the next, a technique known as pooling layers reduces the 

dimensionality of data. Little clusters are combined using local pooling, which 

regularly uses tiling sizes of 2x2. Each neuron of the feature map is affected by 

global pooling. Max and average are the two most widely used types of pooling. 

When comparing local clusters of neurons in the feature map, max pooling utilizes 

the largest value whereas average pooling uses the average. The structure of a CNN 

switches to classification after learning features in numerous layers. The next-to-last 

layer is a fully connected layer that generates a vector of “N” dimensions (“N” is the 

maximum number of classes that may be predicted) and contains the possibilities for 

each class that a target image belongs to. All of the neurons in one layer 

communicate with all of the neurons in the other layer through fully connected layers. 

It is equivalent to a conventional multilayer perceptron neural network (MLP). To 

identify the images, the flattened matrix passes through a layer that is fully 

connected. The final output of the final classification is provided by a classification 

layer in the last layer of the CNN architecture [73]. Various types of CNN models 

have evolved throughout the evolution of the object recognition problem. These 

include LeNet, AlexNet, ResNet, GoogleNet / Inception, MobileNetV1, ZfNet and 

Depth based CNNs. And when studying the problem of recognizing sound signals, 

simple types of convolutional layers created by several layers were used a lot [1, 

p. 864-866; 3, p. 170; 16, p. 472-473; 17, p. 2-3; 74-78]. The CNN infrastructure is 

adaptable for image data due to the description of the network and their functionality. 

Therefore, the next subsection discusses the theoretical foundations of recurrent 

neural networks, which are considered effective for time-varying signals such as 

sound [79-83]. 
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4.2 Recurrent Neural Networks (RNNs) in Sound Recognition 

The initial and most basic design of an artificial neural network was a 

feedforward neural network. In this network, data only travels forward from the input 

nodes, via any hidden nodes present, and onto the output nodes. The network 

contains no loops or cycles. Feed-forward neural networks for sound recognition 

tasks have proven attractive in more researches. Moreover, a feedforward network 

has become popular for solving prediction problems like image recognition, computer 

vision, speech recognition, sound detection [84-86] and others since it employs 

multiple hidden layers to maximize learning from the input data [75, p. 229-233; 76, 

p. 8-10; 77, p. 87-90]. Overfitting is the primary issue with merely utilizing one 

hidden NN layer. By increasing the number of hidden layers, overfitting can be 

decreased and generalization can be enhanced. As NNs increase layers, they become 

Deep FNNs. Deep FF neural networks also have a drawback in that adding more 

layers exponentially lengthens training time, making FF quite impractical [20, p. 26]. 

Based on the development of functional shortcomings of feed-forward neural 

networks, RNN networks have appeared. Recurrent Neural Networks (RNNs) are 

derived from Feedforward Neural Networks (FF) as a subset. RNNs can extract long-

term dependencies and features from sequential and time-series data. The input 

received by each neuron in an RNN's hidden layers is delayed in time. Current 

iterations in recurrent neural networks need access to historical data. For instance, 

one needs to be aware of the words that came before the one they are predicting in a 

sentence. The RNN can use any lengths and weights as it processes the input over 

time. This model's computations take into account historical data, and its size is 

independent of the volume of input data. The slow processing speed of this neural 

network is a weakness of this network [78]. Based on the solution to this 

shortcoming, several types of RNNs have emerged. At present, four different 

computational cells of RNNs such as simple RNN, LSTM, BiLSTM and GRU are 

popular for prediction. The following subsections provide a theoretical basis for these 

4 different RNN networks. 

 

4.2.1 Simple Recurrent Neural Networks (RNNs) in Sound Recognition 

RNNs, or Standard Recurrent Neural Networks, are a subclass of neural 

networks capable of recognizing sequence data. And these networks are widely used 

by the Python programming environment with the Keras libraries. Standard RNN 

networks are known as "SimpleRNN" in the Keras libraries. There are three layers in 

a simple RNN: input, hidden, and output layers, as shown in figure 17. According to 

Simple RNN's fundamental working theory, nodes are connected to comprehend 

current information by feeding the output of the neural network layer at time t to an 

input from the identical network level at time t +1. A series of vectors over time t, 

such as ..., xt - 1, xt, xt + 1, ... make up the input data. Input blocks in a Simple RNN 

with complete connectivity communicate to hidden blocks in a hidden layer. The 

hidden units in the hidden layer are as follows: ht = ht-1, ht, ht+1,..... They are 

connected to one another throughout time by periodic connections. In figure 17, the 

idea of an unrolled structure for RNN networks is depicted as a "Unfolded" form for 
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the situation of multiple input time steps xt-1, xt, xt+1,..., multiple internal state time 

steps ht-1, ht, ht+1,..., and multiple output time steps yt-1, yt, yt+1,.... 

 

 
 

Figure 17 – Simple RNN structure and its unfolded (unrolled) form 

 

The performance and stability of the network can be increased by initializing 

hidden modules with modest non-zero elements. There are disadvantages to these 

networks. The gradient disappearing and explosion difficulties are Simple RNN's 

primary drawbacks. In the process of solving the shortcomings of the standard RNN 

network, LSTM networks appeared. The next subsection will provide the basis of 

Long-term short-term memory (LSTM) networks [20, p. 6]. 

 

4.2.2 Long-term short-term memory (LSTM) for sound recognition 

The Long Short-Term Memory (LSTM) architecture of the recurrent neural 

network (RNN) was created to address the regular RNN's vanishing and expanding 

gradient issues [50, p. 339-340; 51, p. 11]. In the areas of handwriting recognition, 

language modeling, image captioning, and classification of acoustic signals, LSTMs 

have demonstrated effectiveness in predicting sequence issues [87-89]. Compared to 

other techniques, LSTM network model training is more accurate but takes more 

time. Gated Recurrent Unit (GRU) networks have been designed to shorten training 

times while retaining a high level of training accuracy. The usage of GRU networks 

in classification tasks is also widespread [48, p. 2163-2-2163-10]. This thesis 

suggested to investigate SimpleRNN, LSTM-based RNN units, and Gated Recurrent 

Unit (GRU) models for UAV acoustic representations categorization challenge. 

Recently these models have been applied more effectively to the training of sound-

based recognition systems.  

A recurrent neural network structure called LSTM substitutes the normal layers 

of the neural system with long-term memory cell blocks to get around the issue of 

long-term reliance (figures 18, 19). Typical LSTM cell blocks are composed of four 

interlocking layers: a cell state, an input gate, an output gate, and a forget gate. 
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Figure 18 – LSTM architecture 

 

 
 

Figure 19 – Computational cell of LSTM  

 

The output data from the previous cell ℎ𝑡−1 is mixed with the feature extraction 

sequence data 𝑥𝑡. Also, this combination of input data passes via the input gate 𝑖𝑡. 

(10) and the forget gate 𝑓𝑡 (9). Both gates have sigmoid activation functions that 

outputs between 0 and 1. equations (9), (10), (11), (12), (13), (14). 

 

𝑓𝑡 = 𝜎(𝜔𝑓[ℎ𝑡−1, 𝑥𝑡]+𝑏𝑓)       (9) 

 

𝑖𝑡 = 𝜎(𝜔𝑖[ℎ𝑡−1, 𝑥𝑡]+𝑏𝑖)       (10) 

 

�́�𝑡 = tan(𝜔𝐶[ℎ𝑡−1, 𝑥𝑡]+𝑏𝐶)       (11) 

 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �́�𝑡       (12) 

 

𝑂𝑡 = 𝜎(𝜔𝑂[ℎ𝑡−1, 𝑥𝑡]+𝑏𝑂)       (13) 

 



 

48 

 

ℎ𝑡 = 𝑂𝑡 × tan 𝐶𝑡       (14) 

 

As a result, the input gate (11) determines which input values to update, while 

the forget gate (9) determines what data to delete from the cell. Moreover, the tanh 

layer, �́�𝑡., compresses that mixture. 

Here 𝜔𝑓, 𝜔𝑖, 𝜔𝐶  are the weights of the corresponding gate neurons; and 𝑏𝑓, 𝑏𝑖, 

𝑏𝐶 are the offsets for the corresponding gates. LSTM cells have an inner loop (cell 

state) consisting of a 𝐶𝑡 (12) variable called a constant error carousel (CEC). The old 

state of cell 𝐶𝑡−1 is switched to set an efficient recurrent loop with the input. The 

compressed combination �́�𝑡 is multiplied by the × input data of the 𝑖𝑡 (figure 19). 

A forget gate, which chooses which data should be kept or deleted from the 

network, is in charge of controlling this recurring loop. 

Instead of multiplying, the addition approach ⊕ in this case lowers the chance 

of the gradient disappearing. The system then uses the tanh function to push the 

values between {-1} and {1} and multiply that result by the output of the sigmoid 

gate to position the cell state (12). 

So, this gate (13) chooses which values from the ℎ𝑡 cell should be output as the 

actual output. In general, updating the internal state is done via the input gate and the 

forget gate (11). Because to their many memory slots, LSTM networks have more 

complicated computations and greater memory requirements than simple RNNs. It 

varies from traditional RNNs in that it has strong advantages over gradient vanishing 

as well as long-term dependence. 

In the course of the experiment, vanish LSTM, (figure 20) and stacked LSTM, 

(figure 21) models were studied, as a result, a single-layer model was developed to 

spend less time on calculation. 

 

 
 

Figure 20 – Vanilla LSTM  

 

 
 

Figure 21 – Stacked LSTM  
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To sum up, LSTM advantages are that it overcomes disappearing and 

exploding gradients as well as long-term temporal dependency issues with input 

sequences [20, p. 6-7; 51, p. 11-12; 52, p. 2-3]. 

 

4.2.2.1 Bidirectional Long Short-Term Memory (LSTM) 

Bidirectional LSTMs are a development of typical LSTMs that can enlarge 

model performance in sequence classification tasks. With all the time steps of the 

input sequence, Bidirectional LSTMs train two LSTMs instead of a single LSTM in 

the input. Bidirectional LSTMs solve the problem by outputting data from the input 

sequence in the forward and reverse directions over time steps.  

 

 
 

Figure 22 – Stacked Bidirectional LSTM architecture 

 

By placing two layers side by side, delivering the input sequence exactly as it 

is at the first level's input, and providing a reverse copy of the input sequence at the 

second layer's input, this architecture effectively duplicates the first recurrence level 

in the network. Hence, this extra context speeds up the results [35, p. 2527-2528; 36, 

p. 403-405]. As a result, two different hidden layers are used by the BiLSTM network 

to process the 𝑥𝑡 sequence data in both the forward and reverse directions, and their 

hidden layers are joined by a single output layer, as shown in figure 22. Similar to the 

LSTM level, the Bidirectional LSTM level's final output is a vector, 𝑦𝑡 =
[𝑦𝑡−1, … , 𝑦𝑡+1] the last element of which is the predicted sequence for the following 

time steps 𝑦𝑡+1. Due to its increased computational complexity over LSTM as a 

result of forward and backward learning, BiLSTM demonstrates its drawback. Their 

key benefit is that, compared to LSTM networks, they more accurately reflect the 

input sequence's past and present contexts [20, p. 7]. 
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4.2.3 Gated Recurrent Neural Networks (GRU) for Sound Recognition 

The LSTM network has been shown to be a practical solution for keeping 

gradients from dissipating or exploding, however because of the many memory 

locations in their architecture, they require more memory [49]. To address this issue, 

the scientists [53, p. 1724-1733] created the GRU network, which requires less 

learning time than the LSTM structure and still achieves great accuracy. The output 

gate of GRU networks is absent, in contrast to LSTM networks. The structure of 

GRU is seen in figure 23. Two input functions, the previous output vector ℎ𝑡−1 and 

the input vector 𝑥𝑡, are found in the structure of GRU networks at each instant of 

time. Moreover, the input of each gate can undergo a logical operation and a non-

linear transformation before being used as the output.  

 

 
 

Figure 23 – Gated Recurrent Neural Network architecture 

 

Here, the output to input ratio can be described as follows, equations (15), (16), 

(17), (18): 

 

𝑟𝑡 = 𝜎𝑔(𝜔𝑟𝑥𝑡+𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)      (15) 

 

𝑧𝑡 = 𝜎𝑔(𝜔𝑧𝑥𝑡+𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)      (16) 

 

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡ℎ̀𝑡       (17) 

 

ℎ̀𝑡 = 𝜎ℎ(𝜔ℎ𝑥𝑡+𝑈ℎ(𝑟𝑡ℎ𝑡−1) + 𝑏ℎ)      (18) 

 

Where 𝑈𝑟, 𝑈𝑧, 𝑈ℎ and 𝜔𝑟, 𝜔𝑧, 𝜔ℎ are weight matrices for the individual gate 

neurons, 𝑧𝑡 is the update gate vector, 𝑟𝑡 is the reset gate vectors are rt, zt, ht. A 

hyperbolic tangent is 𝜎ℎ, and 𝜎𝑔 is a sigmoid function [20, p. 8; 48, p. 2163-2-2163-

14)]. 

When the reset gate is near to 0, as in this configuration (figure 23), the hidden 

state ignores the prior hidden state and only resets with the current input. This enables 
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the hidden state to delete any data that will no longer be relevant in order to provide a 

view that is more condensed. The update gate also regulates the amount of data that is 

moved from the prior hidden state to the present hidden state. This enables the RNN 

to store long-term information and functions similarly to LSTM memory cells. Each 

hidden module will develop the ability to recognize dependencies at various time 

scales because each one has a unique reset and update gate. A reset gate will be 

frequently active in modules that are taught to capture short-term dependencies, but 

an updated gate will be more frequently active in modules that gather long-term 

dependencies [53, p. 1725-1730; 90-92]. 

The drawback of GRU is that it has a higher computational cost and memory 

need than Simple RNN because to the numerous hidden state vectors. GRU networks 

offer a wider range of practical uses thanks to benefits like the capacity to represent 

long-term dependent sequences, resilience to gradient reduction, and reduced 

memory requirements. This thesis aimed to conduct practical research for the UAV 

sound recognition task, taking into consideration all the characteristics of computing 

modules RNN networks stated above in theory [20, p. 6-8]. 
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5 REAL-TIME UAV ACOUSTIC DATA RECOGNITION AND 

CLASSIFICATION SYSTEM 

 

5.1 The proposed real-time Drone Sound recognition system 

The study of this dissertation work is aimed at developing a drone detection 

system with the recognition of their acoustic data. The main objective is the creation 

of a system that can recognize UAV sounds in real-time. This is due to the fact that 

when suspicious UAVs are employed in crowded areas, identifying UAV sounds aids 

in establishing security as one of the UAV detection methods. The key issue is real-

time detection of suspicious UAVs. One of the initial steps is fast real-time analysis 

of their acoustic data. The literature review section demonstrates that while drone 

sound processing and recognition has been researched generally, but no specific work 

has been found to adapt it for real-time performance based on SPU or GPU base. In 

order to recognize UAV sounds in real time, it must be possible to quickly process 

their acoustic data. In this regard, our study considered it appropriate to investigate 

this research question. 

In most sound recognition studies, the signal pre-processing step is often 

performed in advance during the data preparation step. That is, these pre-prepared 

data are stored in special folders, which occupied additional space and time, then it 

could be obtained from these folders when it is fed into the recognition algorithm. So, 

in the preparation of acoustic data of the UAV at this stage consisted of two steps: 

first, the UAV was recorded in different states, and then processed in advance. And 

according to the proposed study of this dissertation, the fast sound signal processing 

layer is located before the neural layers as the Keras layer. It is based on the KAPRE 

method [43]. This section creates a proposed recognition system through the next 

three subsections: “Adaptation of UAV Sound Recordings for Real Time System”, 

“Processing of UAV acoustic signals using the KAPRE method: Melspectrogram” 

and “Real-time and RNN network-based UAV sound recognition architecture”. 

 

5.1.1 Adaptation of UAV Sound Recordings for Real Time System 

In general, the study of the sound recognition of drones began with the 

recording of their sounds. This is due to the fact that the sounds of the drones were 

needed as initial data to start the study. This procedure was therefore carried out and 

addressed prior to the selection of methods and their theoretical explanation in 

section 2. The main focus of this dissertation is the development of a recognition 

system that can detect in real-time. "Real-time" comprehension in this study is 

presented as a system adapted to recognize an audio file of 1 second duration. To do 

this, it must first satisfy the requirements for processing audio data using deep 

learning. In other words, audio data for deep learning model needs to be divided into 

groups for "training" to train the model and "validation" to test the model's reliability. 

Firstly, all the recorded sounds of drones were divided into 3 main classes in 

accordance with their content value in Section 2. It was a class of “Loaded UAV” 

with a special payload imitating suspicious drones, and the class “Unloaded UAV” 

and the “Background noise” class. The collected sounds for these 3 different classes 
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were preserved with their initial length of 3 different folders. However, the duration 

of the audio recording must be adjusted such that recognition feedback can be 

received every second. Therefore, the length of previously recorded and collected 

audio data is requested to be 1 second each. Because of this task, a “special filtering 

block” has been created that re-adapts recorded UAV audio recordings of various 

states and lengths to the given conditions into appropriate folders (figure 24).  

 

 
 

Figure 24 – UAV sound recording adaption algorithm for real-time systems 

 

This “filtering block” retrieves all previously recorded UAV audio files of 1-

second length. It is important to emphasize that the study was carried out using 

supervised learning. The filtering unit receives audio data of different lengths. There 

are 2 functions here. One of them is envelope function (figure 25). And threshold 

value taken as "0". Because the envelope of an oscillating signal is a smooth curve 

defining its extremes, the envelope function was utilized (figure 26). Since the sounds 

of the drone are superimposed on background sounds and there are sounds from 

various motorized objects, the “0” threshold was effective. 

 

 
 

Figure 25 – Implementation of the envelope function in “Filtering Block” 
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Figure 26 – Signal Envelope method with the threshold “0” 

 

All initial files of their different lengths, figure in (Appendix E), were cut as 1-

second audio files and stored in folders classified according to the initial classes such 

as “Loaded UAV”, “Unloaded UAV”, and “Background noise” (figure 27). 

 

 
a 

 
b 

 

a – Splitting long files into seconds files; b – Saving received files with classes 
 

Figure 27 – Audio filter preserving audio files under one second in length 

 

The acoustic data of the UAV were adapted before studying the stage of 

recognition of UAV sounds based on the analysis of frequency ranges. Acoustic data 

was studied in the time domain first. And our background noise class consists of the 

sounds of many motorized objects. The sounds of these objects were collected to 

prevent false recognition due to the possibility of confusion during recognition. 

Therefore, due to the large number of types of background noise objects, the 

background noise class was temporarily expanded in this adaptation step, Figures in 

(Appendix D) and figures 28, 29. The frequency range of the extended classes was 

then studied to preliminarily determine the range of object spectra up to the KAPRE 

layers in the model. Therefore, it is necessary to analyze the sounds of various objects 

in the frequency domain based on their natural appearance (figures 28, 29).  
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Figure 28 – Temporary extension of background noises 

 

The spectra for each class in the frequency range for our signals were obtained 

using the Fast Fourier Transform (FFT) to perform this fundamental analytical work. 

They were separated in time and frequency domain only temporarily during the 

adaptation analysis stage. And during the application in the neural model, these all 

extended classes of background noise were processed together as background noise.  

This class extension analysis method helped to determine the frequency ranges 

of the desired objects at the level of 16000 Hz, since the informative parts were 

visible only in this region (figure 29). That is, the informative component of the 

sounds of the UAV and the background noise we need is reflected only up to 16000 

Hz, which can be seen in the frequency domain (figure 29). 

 

 
 

Figure 29 – UAV signal analysis in the frequency domain using extended six classes 
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The UAV dataset had adapted to be down sampled based on research of 

objects’ frequency range. This specially created filter unit of the Downsampling was 

constructed to perform these tasks (figure 30). 

 

 
 

Figure 30 – Function unit for "Downsampling” 

 

The audio data through this block gave a database of audio files with 1 second 

duration and a frequency set to 16000 Hz (figure 31). In addition, cutting off the 

audio spectrum above the 16,000 Hz region saved over-computing time. 

 

 
 

Figure 31 – Filtering block with Downsampling 

 

The characteristics of the audio signal of the UAV at this stage of the temporal 

expansion of classes are not processed, but only adapted. The spectra of the signals 

that have successfully adapted to the above procedure using the filter bank are shown 

in Figures (Appendix F, G). Feature extraction from audio signals has been 

incorporated into the deep learning model itself, which will be discussed in the next 

section. The next subsection discusses building the first layer of a basic RNN 

recognition model, i.e. the signal processing layer, using the Keras libraries and the 

KAPRE method.  

 

5.1.2 Processing of UAV acoustic signals using the KAPRE method: 

Melspectrogram 

The deep neural network models that will be presented in this paper in the next 

subsection use the image-based classification method. And it is able to distinguish 

between different types of object images according to their feature vectors taken from 

the audio data. Therefore, it is necessary to extract feature vectors from UAV sounds. 
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By examining the frequency spectrum of drone sounds extensively, these feature 

vectors can be produced. In general, the processing of drone sound data obtained 

during research in the frequency range is called "feature extraction". Efficient 

frequency extraction for a real-time UAV sound recognition system was found in the 

course of empirical studies that were published earlier in publications [15, p. 457-

458; 16, p. 473-474; 20, p. 26-24-26-25]. Efficient frequency extraction was the 

layers of Melspectrogram [20, p 26-25]. Table 5 displays the hyperparameter ranges 

and chosen values for the Melspectrogram feature layer. The python programming 

environment was used to perform fast calculations to obtain this Melspectrogram 

layer. 

 

Table 5 – Hyperparameters of Melspectrogram layer 

 

Thus, it is suggested that the vectors of the Mel scale be extracted from the 

UAV sound data while keeping the time and frequency information parameters, 

which are called STFTs. In many investigations, the libraries Librosa and Essentia 

are primarily used to implement temporal and frequency characteristics based on 

conventional approaches. This study implements the KAPRE method built as Keras 

layers in Python. The adjustment of acoustic sound processing parameters is the main 

benefit of the Kapre approach. And the presentation of the hyperparameters of this 

layer from a programmatic point of view was given in (figure 32a). 

 

 
a 

 
 

b 

a – Programmatically feeding the hyperparameters of the Melspectrogram layer; b – Layers 

of processed signals based on Melspectrogram Layer during training 
 

Figure 32 – Implementation of the Melspectrogram Keras layer 

Keras layers Hyperparameters Best fit Range 

Melspectrogram Sampling rate 

Window length 

Hop length 

Number of Mels 

[Frequency, Time] 

16000 Hz 

512 

160 

128 

128*100 

600-44100 Hz 

512, 1024 

160, 256 

40-128 
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And when the hyperparameters of this Melspectrogram layer are implemented 

in accordance with the code line in figure 32a, the mathematical calculations which 

discussed in the third section above will be performed based on fast calculations. This 

can be seen from (figure 32b).  

The features of the proposed Melspectrogram layer can also be seen visually in 

figure 33, where they are represented as a picture. 

 

 
 

Figure 33 – Melspectrogram images with 4 class database case 

 

The other representations of feature extraction methods such as MFCC, Filter 

bank, their normalization, and data augmentation can also be carried out in real-time 

on a GPU or CPU using this KAPRE method. In fact, this method allows finding 

optimal time-frequency representations and their characteristics for use in audio pre-

processing. This can save a lot of memory since each configuration often uses the 

same amount of memory as the decoded audio samples [20, p. 7-8]. A wide variety of 

methods of the feature Extraction were obtained and used during empirical research. 

And their visual appearances are presented in the figures in the appendices section. 

The sequence of experiments demonstrated the effectiveness of the Melspectrogram 

layer. Therefore, the Melspectrogram layer was chosen for the drone database.  

To summarize this subsection, the Melspectrogram is a KAPRE layer that has 

been expanded on the spectrogram by multiplying the Mel scale transformation 

matrix from the linear frequencies [43]. The proposed approach explored a large 

range for the Melspectrogram layer, as can be seen from (table 5). As a result of 

experimental attempts, 100-time vectors and 128 frequency features were obtained, 

(figure 33). And the next subsection will consider the entire structure of the proposed 

algorithm. 

 

5.1.3 Real-time and RNN network-based UAV sound recognition architecture 

This dissertation is primarily aimed at performing real-time UAV sound 

classification. The study of CNN and RNN networks, which are widely known for 

general purpose object recognition systems and have a high recognition ability, is 

considered. According to literature reviews, CNNs have been the preferred models 

for image processing and recognition. Much of the work on UAV sound recognition 

using CNN models has been achieved by deepening the CNN layers. Again, a 
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number of references show that most sound recognition systems are the preferred 

models for processing and recognizing audio signals. On this basis, extensive 

experimental studies have been carried out on the recognition ability of recurrent 

neural networks compared with CNN networks. All common types of recurrent 

networks have been considered. In particular, SimpleRNN, LSTM, Bidirectional 

LSTM and GRU networks. The significant success of recurrent neural networks in 

the analysis of sound (audio) signals and speech has become a motivating factor for 

their more extensive practical research on sounds than CNNs. Because the initial data 

in this thesis are sound data, not images.  

Previous studies [1, p. 863-865; 2, p. 244-245] on UAV sound recognition have 

shown that signals of 20 seconds or less were processed and recognized. That is, 

using the research model of work [1, p. 865-866] would require 20 seconds to process 

sound for the security of the protected environment. In general, this work is 

appreciated because it has made a great contribution to the solution of the scientific 

question of the recognition of drone audio signals and is able to experimentally prove 

the possibility of UAV audio data using one model of the Pantom series. In general, 

many dangerous situations could develop in 20 seconds. That is why it is necessary to 

create a real-time system that could instantly distinguish between UAV states, in 

particular, loaded and unloaded UAVs or background noise. These aspects were 

taken into account when carrying out experimental work on the problem of 

classifying three types of UAV sounds using four different types of computational 

neural cells from recurrent neural networks, including SimpleRNN, LSTM, 

Bidirectional LSTM and GRU. The classes "Unloaded UAV", "Loaded UAV" and 

"Background noise" were taken as the main base classes. This is because in many 

situations, identifying a particular type of drone does not result in a pressing need. 

However, earlier works [6, p. 2-3; 7, p. 1-3] considered the potential of this problem. 

Also, figuring out the drone's load is an extremely important system for scenarios that 

seem suspicious. In particular, it can be applied as a solution or preventive action for 

life-threatening problems such as the transit of life-threatening products, the 

possibility of weight being dropped on people even though it is harmless, and for 

military purposes. Also, the detection of a suspicious UAV entering a strategically 

protected area can be resolved with the ability to recognize UAV sounds. 

Furthermore, figuring out the UAV's load is challenging because it sounds similar to 

the UAV itself. The flight sound with an extra weight might have different time and 

frequency matrices, which might facilitate recognition. Therefore, in order to find a 

solution to this scientific question, the architecture of a deep learning based neural 

network was studied from an experimental point of view. Based on extensive 

research, a deep neural network architecture has been developed for recognizing 

UAV acoustic data. And in this proposed system, the UAV sound processing step is 

added as the first layers of the recognition system architecture. The structure was 

given in figure 34 [20, p. 11].  
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Figure 34 – The proposed RNN based Framework for Real-time UAV sound 

recognition  

 

It can be seen from figure 34 that in the proposed structure, the block on the 

left is a 1 second file type adaptor, which filters the audio data as explained in the 

previous subsections. This device can be thought of as a drone sound production 

stage. And the main big block in the middle of figure 34 is a deep learning structure 

with modified Melspectrogram that allows us to recognize drone sounds.  

The input layer of this main block is the Melspectrogram layer, which 

processes drone sounds based on the On-CPU. The Melspectrogram is processed with 

the help of STFT calculation and FFT calculation in real time according to the 

respective steps as explained in the theoretical framework. Therefore, this layer 

consists of several layers during training.  

And from one layer during the code line. This layer calculates features of UAV 

acoustic data in the dimension of 128 features vectors of frequency by 100 features 

vectors of the time. And the KAPRE method libraries in Keras, which allow 

processing this layer, are pre-installed and their libraries are called according to the 

programming requirements. The tuned hyperparameters of the proposed UAV 

acoustic data recognition architecture was given in table 6. 

 

Table 6 – The hyperparameters of the proposed architecture  
 

Keras layers Hyperparameters Best fit Range 

1 2 3 4 

Melspectrogram 

Sampling rate 

Window length 

Hop length 

Number of Mels 

[Frequency, Time] 

16000 Hz 

512 

160 

128 

128*100 

600-44100 Hz 

512, 1024 

160, 256 

40-128 

LayerNormalization Batch Normalization - - 

Reshape TimeDistributed (Reshape) - - 

Dense TimeDistributed (Dense), tanh - - 
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Table 6 continuation 

 

Melspectrogram hyperparameters were studied experimentally in order to 

determine the effective length of the feature extraction of this layer in different 

ranges. 100 and 128 are the most effective lengths. And the studied range of the 

lengths of the vectors of this layer were discussed in table 5, 6. And it was modified 

by splitting frames according to table 5 from 1 second audio. This is because 

deepening other layers in the recognition architecture created with deep learning did 

not yield a very high recognition capability. In this regard, 2 factors should be 

mentioned. First, the UAV acoustic data was investigated with a small database at the 

beginning, figures (Appendix C). Secondly, in previous publications [15, p. 455; 16, 

p. 472], the MFCC signal processing method was used with short feature vectors for 

recognition. And then the Melspectrogram layer was studied extensively. On the 

basis of this layer, a sufficiently high recognition rate was obtained. So, the modified 

feature vector was selected according to Table 5 and 6. The UAV acoustic database 

was expanded from the initial. The study was carried out again on this database using 

modified Melspectrogram, and published in work [20, p. 18]. To adapt acoustic data 

feature vectors derived from Melspectrogram layers to feed into RNN layers, 

normalization and layer reshaping layers were provided (table 6). These 

Melspectrograms use a normalization layer after themselves in the model that 

normalizes the 2D input data by time, frequency, batch and channel. Further, the 

received vectors are sent through the TimeDistributed (Dense) layer with the 

activation function tanh and fed into the RNN cells. The recurrent cells SimpleRNN, 

LSTM, BiLSTM, GRU, described in the theoretical section, were used as RNN 

layers. As a result, considering each type of RNN models separately, 4 RNN models 

were studied. A concatenation layer was added after the RNN cells, and dense layers 

were connected depending on the hyperparameters as in Table 6. The number of cells 

of recurrent networks was initially taken as 32. To simplify the study of the design, 

the MaxPooling1D layer was added. Then a dense layer of 32 relu cells was 

1 2 3 4 

RNN cells (Fmaps) SimpleRNN, LSTM, 

BiLSTM, GRU 

GRU (64) 32-64 

Concatenate 

Dense Dense, relu (64) 33-128 

MaxPooling MaxPooling1D - - 

Dense Dense, relu 32 32-128 

Flatten 

Dropout Dropout 0.25 0.2-0.3 

Dense Dense, relu 

activity regularizer 

activity regularizer 

32 

0.01 

0.00001 for 

GRU (64) 

8-32 

0.01-0.00001 

0.01-0.00001 

Dense Dense 

Activation in classification 

Optimization solver 

# epochs 

(# classes) 3 

softmax 

adam 

25 

(3,4) 

 

sgdm, adam 

25-150 
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developed. Multidimensional output is also linearized and transferred to a dense layer 

using a Flatten layer. For the classification task, the output of the Flatten layer is 

passed to the next layers. When testing a 32-cell RNN model, a Dropout layer with a 

coefficient of “0.2” was added as a next layer to prevent model overfitting. Before the 

final dense layer, a 32-cell dense layer was added along with an activity regularizer 

and a “relu” function. It is important to note that the activity regularizer feature 

significantly affected the to the accuracy plots during model training for certain UAV 

sounds. Thus, the range of this function was from 0.01 to 0.00001. And the 

coefficient of Dropout layer has been adjusted according to the size of the RNN cells. 

In the case of the GRU model, a change in the dropout coefficient from 0.2 to 0.3 was 

taken into account, since the model could be retrained with an increase in the number 

of cells to 64. As a result, a factor of 0.25 was optimal for the Dropout layer in GRU 

model case. 

The "categorical cross-entropy" loss function is tuned for the multiple 

classification problem in the model implementation. The classification problem and 

weights are optimized using the "Adam" gradient descent implementation. To assess 

the model's ability to learn and generalize across all architectures, "accuracy" is 

calculated during model training and validation. 

The proposed deep learning-based recognition architecture was designed with 

hyperparameter tuning set according to table 6. A total of 5 models were considered, 

including 4 RNN models and 1 CNN model. The results obtained and visible layers 

during training will be discussed in more detail in the next section. The proposed 

deep learning framework, trained according to the hyperparameters in table 6, 

consisted of only one RNN layer. Compared to previous studies [1, p. 862-865; 15, 

p. 457; 16, p. 473-474], it differs in that it has a simpler structure. This, in turn, 

requires less computation for calculations. The number of epochs indicating the 

number of training sessions is also small. However, many experimental studies have 

been carried out empirically to determine the hyperparameters of such a simple and 

fast computational structure of the CNN as well. This set of experiments is shown in 

Table 6 as the hyperparameter search area. And information about the recognition 

process trained on the basis of this modified model and its verification is widely 

discussed. The results of these studies are summarized in the Learning and 

Assessment Metrics subsection. However, the CNN shows good recognition 

capability only by increasing the CNN layers. This model deepened with several 

CNNs itself had a lower recognition rate than a single-layer RNN network. For this 

reason, in this dissertation, priority is given to the study of the ability to recognize 

types of RNNs. And in order to justify the comparison of the RNN network with the 

results of the CNN network, the subsection will be discussed based on the 

experimental results. 

 

5.2 Results and discussion of the Proposed System 

In this subsection, four recurrent neural network models such as SimpleRNN, 

LSTM, BiLSTM, and GRU were trained using the proposed neural architecture from 

(table 6). And the CNN model structure shown in table 5 of [1, p. 243] was trained 
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using our set data. During the experimental work, the tests were carried out on the 

Python program (Appendix H) and on the Intel(R) Core (TM) i5-8265U processor 

with a clock frequency of 1.60 GHz. The distribution of UAV acoustic data is divided 

according to 70 by 30, 70% of the total number of received sound files were given for 

training, and the remaining 30% were stored for validation, which were not seen by 

the models. In addition to these 30% validation files, 100 files of 1 second duration 

for each class were separately saved, for a total of 300 files for all three classes, to see 

how well and consistently the models can distinguish between each class. As a result 

of training, the recognition accuracy of models developed for real-time systems was 

thoroughly tested on 30 percent of the training data using model recognition accuracy 

plots. Initially, all models were trained with 30 epochs when they had 32 RNN cells 

on models. The "good fit" model curve area was selected with 25 epochs after the 

training and having the accuracy plots. Each model went through a new training run 

of 25 epochs before being saved as a Pickle file with a ".h5" extension. And the 

classification efficiency of 300 independently stored files was tested using the 

confusion matrix, F1, recall, and accuracy. The training times for these models are 

given in figure 35 pictures in seconds. 
 

 
 

Figure 35 – Training time with proposed models 

 

To evaluate the practical applicability of RNN cell type recognition 

capabilities, all layers of the architecture of RNN models remained unchanged after 

training. Two experimental tests were run on these trained RNN models. When 

training each model, the following architectures were obtained. Due to the fact that 

the priority of the dissertation research is given to the architecture consisting of RNN 

networks, the figure below shows the architecture of RNN models obtained after 

training, figures 36, 37, 38, 39. At the initial stage, the graphs of the accuracy of the 

model were studied. This was necessary to evaluate the reliability of the trained 

models on the given dataset. The second step included a detailed prediction for 300 

"one-second audio files" that had previously been stored separately. The confusion 

matrix was obtained to accurately assess the ability to recognize individual classes.  
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Figure 36 – The architecture obtained during the compilation of a simple RNN 

network 

 

 
 

Figure 37 – The architecture obtained during the compilation of a simple RNN 

network  
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Figure 38 – The architecture obtained during the compilation of a simple RNN 

network 

 

 

 
 

Figure 39 – The architecture obtained during the compilation of a simple RNN 

network 

 

Table 7 below shows the average value of the recognition results of the first 32 

cell RNN networks. Also, the plot of the recognition accuracy obtained with the 

performance of this training in each epoch is given in figure 36. In this table 7, the 

results of the recognition accuracy obtained by the CNN model are also given 
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Table 7 – Comparison of Model Accuracy of the SimpleRNN, LSTM, BiLSTM, 

GRU, and CNN models on 128-100 dimensional Melspectrograms 
 

Trained models Accuracies in % 

SimpleRNN 

LSTM 

Bidirectional LSTM (BiLSTM) 

GRU with 32 cells 

CNN structure as in [1] 

GRU with 64 cells 

98 

97 

97 

98 

94 

98 

 

Accuracy plots of the models created by their values from 25 epochs. Here, the 

solid lines represent the training line, and the dotted line represents the test line, 

(figure 40). 

 

 
 

Figure 40 – Model Accuracy plots of the 32 cell RNN models 

 

After passing the initial stages of training, an analysis was made on the results 

obtained. Recognition accuracy plots (train and test) were "non-representative" in the 

SimpleRNN model plot, figure 40, despite the fact that the average recognition 

accuracy scores were similar. In addition, the CNN network showed a lower 

recognition rate than other models. This suggests that the recognition performance of 

CNN models for the sounds of UAVs and other objects. The CNN layer can have 

high recognition capability if more CNN layers are added deeply. Two CNN layers 

were added because the CNN structure was based on previous work [1, p. 864]. 

However, compared to single-layer RNN models, the recognition of the CNN model 

was significantly lower as seen (table 7). At the same time, at least 2-3 attempts were 

made to repeatedly check each experiment. This is due to the assumption that a model 

trained only once can be a random chance of prediction. The GRU and SimpleRNN 

models were found to be significantly more accurate than the LSTM and BilSTM 

models. The recognition history plot of the SimpleRNN network was found to be 

unrepresentative and was not continued in further studies. The next step of the study 

involved increasing the number of GRU cells to 64 and continuing training with 25 

epochs. But the value of the "activity regularization" function in the penultimate layer 

was sought from a different interval due to an increase in the number of cells. In the 

GRU model with 64 cells, the values of the “activity regularization” function were 
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taken equal to L2 = 0.00001, which provided “good fit” to the recognition accuracy 

plot. (figure 41) shows the overall accuracy of the models CNN and GRU. 

 

 
 

Figure 41 – Model Accuracy plots of the GRU model and CNN model 

 

The proposed GRU model with 64 cells therefore provides a relatively good 

recognition ability, as illustrated in figure 25 above. Also, it displayed a "good fit" 

model accuracy plot. The CNN model exhibits an unrepresentative gap between 

training and testing accuracy, as well as a lower recognition capability than one-layer 

RNN architecture. In general, there was also a 4-class dataset performed during 

model building and testing. They were checked for drone sounds recorded in the 

immediate area. Also, these were performed on the basis of the first database with a 

small composition. A series of results from such a study is presented as a confusion 

matrix in the (Appendix I). 

In general, it is impossible to accurately demonstrate the capabilities of a 

recognition system based on average recognition accuracy. Therefore, by presenting 

the recognition results in an extended form with recognition accuracy characteristics 

for each class, it is possible confidently assess the predictive power of the models. 

The performance and robustness of the model in the case of many classification 

problems is usually assessed using the classifier confusion matrix. Sensitivity (recall), 

specificity and accuracy can be calculated using the components of the matrix. Many 

performance indicators [7, p. 3856(17-19)], including Precision, Recall and F1, were 

used to evaluate our strategy. 

By calculating the ratio of false positive (FP) objects to true positive (TP) 

objects using equation (19), the accuracy can be determined as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝+𝑇𝑝
       (19) 

 

Equation (20) was used to evaluate recall by comparing true positive (TP) 

predictions with false negative (FN) predictions: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑝

𝑇𝑝+𝐹𝑝
       (20) 
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The F1 score, which reflects the average of the data, was calculated using 

equation (9), (10) because precision or recall does not properly assess system 

predictability, equation (22): 

 

𝐹1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (21) 

 

Each class was made up of 100 files so that they could be visually seen when 

these scoring methods were used on the prediction dataset (300 files). The prediction 

results are shown in Table 8. A confusion matrix was also performed for the studied 

basic 5 models and the later developed 6th GRU model. The confusion matrix, which 

identifies and predicts each class, was able to provide sufficient information to 

predict the reliability of the given models (table 8). 

 

Table 8 – The performance of the models and their Prediction Metric 
 

Model Classes Precision, % Recall, % F1-score, % 

Simple RNN with 32 cells Background noise 

Loaded UAV 

Unloaded UAV 

99 

100 

96 

100 

96 

99 

100 

98 

98 

LSTM with 32 cells Background noise 

Loaded UAV 

Unloaded UAV 

96 

98 

98 

100 

97 

95 

98 

97 

96 

BiLSTM with 32 cells Background noise 

Loaded UAV 

Unloaded UAV 

97 

99 

96 

100 

95 

97 

99 

97 

97 

GRU with 32 cells Background noise 

Loaded UAV 

Unloaded UAV 

99 

97 

97 

99 

98 

96 

99 

98 

96 

CNN as in [1] Background noise 

Loaded UAV 

Unloaded UAV 

99 

95 

90 

95 

89 

99 

97 

92 

94 

GRU with 64 cells Background noise 

Loaded UAV 

Unloaded UAV 

99 

99 

97 

99 

98 

98 

99 

98 

98 

 

As a result, when estimating the background noise class, almost all types of 

RNN models have a very high identifying ability. The CNN model also performed 

slightly worse than the RNN models, but had better accuracy in the background noise 

class. This demonstrates that while CNN models are capable of solving common 

recognition problems, they are less efficient than RNNs when dealing with the same 

sounds of objects that are in different states.  

Moreover, almost all RNN cells have strong recognition abilities from a single 

layer and have a great ability to identify elements based on the engine. Along with 

the capabilities of the RNN network, the structure of the model also plays a special 

role in this situation. Table 7 shows that the "tanh" activation function was used to set 
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the dense layer prior to the RNN model. The dense layers also got the "relu" feature 

after the RNN layer.  

To avoid overtraining, a Dropout layer has also been included. Also, the 

dataset was upgraded from its previous version. In this way, ideal recognition results 

were achieved. In both loaded and unloaded UAV situations, simple RNNs, LSTMs, 

and BiLSTMs failed to demonstrate consistently high sound recognition rates, as 

evidenced by the study of RNN models in table 8. True Positive recognition results, 

shows that the level of recognition of loaded and unloaded UAVs decreased by 4-5%. 

Also, the GRU with 32 cells showed the best performance for the main target class of 

loaded UAVs. And by expanding to 64 cells, the best results were achieved for all 

classes. This leads to the conclusion that GRU cells well and reliably recognize 

different noise states of the same object. And CNN models have proven to be 

effective in processing binary classification with a large number of levels. However, 

all varieties of RNNs have outperformed CNNs on binary and multiple sound 

classification problems due to their stable recognition capabilities. 

This study concludes that the GRU model is a useful tool for recognizing UAV 

acoustic data in different states. The confusion matrix created using the 64 cells of the 

GRU model is shown in figure 42. 

 

 
 

Figure 42 – The confusion matrix produced with the 64 GRU model cells 

 

To sum up, the confusion matrices were designed to display accurately 

predicted and mis predicted audio files of UAV states. The proposed model has 

received wide recognition in the "Loaded UAV" and "Unloaded UAV" classes, which 

were the main focus. The ROC plot of the proposed model is shown in figure 27 to 

demonstrate the robustness of the model. To demonstrate the model's capacity for 

accurate performance on the given dataset, ROC curves were also obtained, 
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(figure 43). Background noise class was paraphrased as ambient noise in this 

assessing plot of the model. 

 

 
 

Figure 43 – ROC curve demonstrating model performance 

 

As a result, the classifier received a data set divided into three classes. In order 

to evaluate the predictability of the chosen classifier and ensure that each distinct 

class is correctly scored, the actual predicted audio files and false negatives of the 

chosen classifier were mapped using a confusion matrix utilizing balanced 100 audio 

recordings per class. The results of the tests using the 64-cell GRU model clearly 

showed that the recognition skills based on the provided database were stable. 
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CONCLUSION 

 

The main goal of this dissertation study was to solve the problem of UAV 

acoustic data recognition. In the course of realizing this goal, the SimpleRNN, 

LSTM, bidirectional LSTM and GRU architecture models have been explored in 

depth for the real-time UAV acoustic data recognition system. This work especially 

carefully examined the situation of whether the UAVs were loaded or unloaded. 

Unloaded UAVs, loaded UAVs, and background noises such as the sound of other 

engine-based objects from the background were the three main classes. Then, an 

efficient method for recognizing UAV acoustic data was determined. During the 

experiments (Appendix I, K, L), the accuracy of the UAV recognition system was 

evaluated using all the metrics from numerous class classification problems. As a 

result, the GRU architecture (64) was found to be an efficient model with a high level 

of predictability on the given dataset. In addition, this model can identify loaded and 

unloaded UAVs with 98% accuracy, as well as background noise with 99% accuracy. 

This evaluation confirms the reliability of the UAV audio recognition system and 

proposes to build a network of acoustic sensors using the proposed GRU model (64). 

Moreover, various RNN network architectures are robust to binary and multi-

classification problems. Because they are better at content-based recognition than 

CNN models. To sum up, the SimpleRNN, LSTM, BiLSTM, and GRU networks 

with the proposed architecture can be used in the task of UAV load detection. The 

CNN model had a somewhat lower level of multiple classification on sounds than the 

RNN model. The CNN could better recognize binary classification instances as seen 

from experimental studies. 

A limitation of this work is the smaller amount of acoustic data from loaded 

UAVs. However, this study showed that it is possible to recognize and evaluate UAV 

loads in real-time mode. A further continuation of the study took the direction of a 

bimodal method for detecting UAVs using software-defined radio (SDR). As a 

scientific continuation of this work, project “AP14971907” is being implemented, 

combining acoustic sensor and SDR methods, Appendix M. The system, in this 

study, is proposed as a scientific solution for small territorial-strategic areas and a 

bimodal method for ensuring national security. And for strategic areas with a large 

area, this acoustic sensor can be repeatedly placed at several points or nodes and 

carry out protection measures with centralized control. 
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APPENDIX A 

 

Table 1 – Model and layers of the CNN algorithm based on the publication  
 

№ Layers # of layers Number of filters for each layer 

1_CNN_by_[1] Convolutional (Conv2D) 

Activation functions: Relu  

MaxPooling (MaxPool2D) 

BatchNormalization 

1 32 (kernel size (3,3), strides 

(2,2)) 

 

2_CNN_by_[1] Convolutional (Conv2D) 

Activation functions: Relu  

MaxPooling (MaxPool2D) 

BatchNormalization 

1 64 (kernel size (3,3), strides 

(2,2)) 

3_CNN_by_[1] Flatten 

Fully Connected Neural 

Network 

Activation functions: Relu  

Dropout  

Fully Connected Neural 

Network 

Activation function: softmax  

 

1 

 

 

1 

1 

 

100 

 

 

0.7 

3 

1_CNN_by_[2] Convolutional (Conv2D) 

Activation functions: Relu  

MaxPooling (MaxPool2D) 

BatchNormalization 

1 10 (kernel size (3,3), strides 

(2,2)) 

 

2_CNN_by_[2] Flatten 

Fully Connected Neural 

Network 

Activation functions: 

Sigmoid 

Dropout  

Fully Connected Neural 

Network 

Activation function: softmax  

 

1 

 

 

1 

1 

 

10 

 

 

0.1 

3 

Note – Compiled according to the source [48, p. 40] 
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APPENDIX B 

 

 

 

 
 

Figure B.1 – Visualization of the Stacked BiLSTM-CNN model presented in 

publication  
 

Note – Compiled according to the source [16, p. 472] 
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APPENDIX C 

 

 
 

Figure C.1 – Composition of the initial dataset of the study 

  



 

81 

 

APPENDIX D 

 

 
 

Figure D.1 – Studying the sounds of background objects and UAVs with 6 classes in 

the Time domain 
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APPENDIX E 

 

 
 

a 

 

 
 

b 

 
a – audio recordings of various lengths in original length; b – the process of studying the 

filter bank, Melspectrogram and MFCC coefficients with various hyperparameters  
 

Figure E.1 – Experimental studies at the stage of audio data adaptation 
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APPENDIX F 

 

 

 
 

 

Figure F.1 – Plot of the Power level of UAV sound signals 
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APPENDIX G 

 

 

 
 

a 

 

 
b 

 

a – filterbank Coefficients for Class 6 UAV Sounds and Ambient Noises by the dimension 

40 by 100; b – decimal Spectrograms for UAV sound signals of the proposed system 

 

Figure G.1 – Investigation of spectrograms with various hyperparameters during the 

experiment  
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APPENDIX H 

 

 
 

Figure H.1 – Implementation of the proposed system in the Python program 
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APPENDIX I 

 

 

 
a 

 

 
b 
 

a – 4-class database recognition experiment; b – 3-class database recognition experiment 
 

Figure I.1 – Confusion matrix from an experiment on recognizing UAVs at close 

range and a certain state 
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APPENDIX K 

 

Conducting experimental studies at international research institutions 
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APPENDIX L 

 

Publication of experimental studies at the conference 

 

 
 
Note – Compiled according to the source [15]  
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APPENDIX M 

 

 
 

Figure M.1 – Minute on the acceptation of a scientific project by the  

"Zhas Galym 2022-2024" 


